
An Interactive Tool for Designing Quadrotor Camera Shots

Niels Joubert∗

Stanford University
Mike Roberts∗

Stanford University
Anh Truong

Stanford University
Floraine Berthouzoz

Adobe Research
Pat Hanrahan

Stanford University

a b

c
d

e

f

g h

Figure 1: (Left) Our interactive tool for designing quadrotor camera shots. In our tool, users specify camera pose keyframes in a virtual
environment using a 3D scene view (a) and a 2D map view (b). Our tool synthesizes a camera trajectory that obeys the physical equations of
motion for quadrotors, and interpolates between the user-specified keyframes. Users can preview the resulting shot in the virtual environment,
using the playback buttons and scrubber interface to navigate through the shot (c). Users can also control the precise timing of the shot by
editing easing curves (d). Users can set the virtual camera’s field of view to match their real-world camera (e). Our tool provides the user
with visual feedback about the physical feasibility of the resulting trajectory, notifying the user if her intended trajectory violates the physical
limits of her quadrotor hardware (f). Once the user is satisfied with her shot, she presses the Start Capture button (g). (Right) Our tool
commands a quadrotor camera to execute the resulting trajectory fully autonomously, capturing real video footage that is faithful to the
virtual preview. We show frames from our real-world video output, with corresponding frames from the virtual preview shown as small insets
(h).

Abstract

Cameras attached to small quadrotor aircraft are rapidly becoming
a ubiquitous tool for cinematographers, enabling dynamic camera
movements through 3D environments. Currently, professionals use
these cameras by flying quadrotors manually, a process which re-
quires much skill and dexterity. In this paper, we investigate the
needs of quadrotor cinematographers, and build a tool to support
video capture using quadrotor-based camera systems. We begin by
conducting semi-structured interviews with professional photogra-
phers and videographers, from which we extract a set of design
principles. We present a tool based on these principles for designing
and autonomously executing quadrotor-based camera shots. Our
tool enables users to: (1) specify shots visually using keyframes; (2)
preview the resulting shots in a virtual environment; (3) precisely
control the timing of shots using easing curves; and (4) capture the
resulting shots in the real world with a single button click using
commercially available quadrotors. We evaluate our tool in a user
study with novice and expert cinematographers. We show that our
tool makes it possible for novices and experts to design compelling
and challenging shots, and capture them fully autonomously.

∗Niels Joubert and Mike Roberts contributed equally to this work.

Keywords: robotics, quadrotors, camera animation

1 Introduction

It is now possible to mount a high-resolution camera on a quadrotor
aerial vehicle, and create beautiful aerial cinematography. Quadro-
tors have become particularly popular because of their maneuver-
ability, small size, and low cost. Unfortunately, flying quadrotors is
difficult, even for expert users. Typically, users control quadrotors
with hand-held joysticks, which requires manual dexterity and prac-
tice. Flying a quadrotor with a camera mounted to it is even more
challenging, because both the quadrotor and camera must be simul-

taneously controlled. Quadrotors can also be flown in autonomous
mode, where users design flight paths by specifying waypoints in
an offline tool. However, existing flight planning tools are not de-
signed for cinematography: they do not allow users to edit the vi-
sual composition of their shot; they do not allow users to preview
what their shot will look like; they do not give users precise control
over the timing of their shot; and they allow users to create shots
that do not respect the physical limits of their quadrotor hardware,
which can cause the quadrotor to deviate significantly from the in-
tended trajectory, or even crash.

In this paper, we introduce an interactive tool for designing quadro-
tor camera shots. Our tool assists users before capture, and assumes
full control during capture. In doing so, our tool enables novices
and experts to capture high-quality aerial footage. To inform the
design of our tool, we conducted formative interviews with profes-
sional quadrotor photographers and videographers, and we accom-
panied them on professional quadrotor shoots. From this study, we
extracted a set of design principles for building useful quadrotor
camera shot planning tools. Our interactive interface (see Figure 1)
instantiates these principles by: (1) allowing users to specify shots
visually in a realistic 3D GOOGLE EARTH environment; (2) pro-
viding a virtual preview of the entire shot; (3) providing users with
precise control over the timing of the shot; and (4) notifying users
if their intended shot violates the physical limits of their quadro-
tor hardware. Together, these features enable cinematographers to
quickly design compelling and challenging shots, focusing on their
artistic intent rather than the specific controls of the aircraft.

To build our tool, we rely on a physical quadrotor camera model, in
which a rigid body quadrotor is attached to a camera mounted on a
gimbal. We analyze the dynamics of our model, and show that cam-
era trajectories must beC4 continuous in order to obey the physical
equations of motion for quadrotors. With this requirement in mind,
we derive an algorithm for synthesizing C4 continuous camera tra-
jectories from user-specified keyframes and easing curves. This
algorithm enables users to design shots visually, and gives users
precise control over the timing of their shot. We then derive an
algorithm to compute the control signals required for a quadrotor
and gimbal to follow any C4 continuous camera trajectory. This al-
gorithm enables our tool to provide the user with visually accurate
shot previews, and visual feedback about the physical feasibility of
camera trajectories.

We use our tool to generate a variety of quadrotor camera shots.
We show a shot captured using our tool in Figure 1. We evalu-
ate our tool in a user study with four cinematographers. Two of
our users are expert quadrotor pilots, and the other two had almost
no quadrotor experience. All of our users appreciated how easy
it was to design compelling and challenging shots using our tool.
Novices stated that our tool would empower them to shoot high-
quality aerial footage, a skill otherwise inaccessible to them, and
experts stated that our tool would improve and extend their existing
workflow.

2 Related Work

Designing Trajectories for Physical Cameras The DJI
GROUND STATION [DJI 2015b] and the APM MISSION PLAN-
NER [APM 2015] systems allow users to design quadrotor camera
trajectories by placing waypoints on a 2D map. The QGROUND-
CONTROL system [Meier et al. 2012] allows users to design
quadrotor camera trajectories by placing waypoints in a 3D scene.
However, these tools do not allow users to edit the visual compo-
sition of shots, do not provide a virtual preview, do not provide
precise timing control, and do not provide feasibility feedback.
Tools for designing physical camera trajectories that support these
cinematography-oriented features have been developed, such as the

BOT & DOLLY IRIS camera control system1. However, these tools
are not applicable to quadrotor cameras. In our tool, we enable
cinematography-oriented features (visual editing, virtual preview,
precise timing control, feasibility feedback) in a tool for quadrotor
cameras, and thus more effectively assist quadrotor cinematogra-
phers.

The 3D ROBOTICS SOLO [3D Robotics 2015] and DJI GO [DJI
2015a] systems allow users to interactively modify quadrotor cam-
era shots during flight. These systems allow users to control the
orientation of the camera and speed of the quadrotor as it flies be-
tween pre-defined waypoints [3D Robotics 2015], or in a circular
orbit around a point of interest [DJI 2015a]. Whereas these sys-
tems can be used to modify shots as they are being executed, our
system can also be used to precisely design shots before they are
executed. Moreover, the 3D ROBOTICS SOLO and DJI GO sys-
tems have autonomous flight modes that will track a moving target
object, whereas our system can be used to design shots where there
is no particular target object.

Designing Trajectories for Virtual Cameras Designing trajec-
tories for virtual cameras is a classical problem in computer anima-
tion. See the comprehensive survey by Christie et al. [2008]. We
discuss directly related work not included in this survey here. Os-
kam et al. [2009] and Hsu et al. [2013] generate camera trajectories
by solving a discrete optimization problem on a graph representa-
tion of a scene. Both of these methods refine the resulting discrete
trajectory, either by using an iterative smoothing procedure [Oskam
et al. 2009], or by solving a continuous optimization problem [Hsu
et al. 2013]. Existing methods for synthesizing virtual camera tra-
jectories guarantee C1 or C2 continuity. However, we demonstrate
in Section 8 that camera trajectories must beC4 continuous in order
to obey the physical equations of motion for quadrotors. With this
requirement in mind, our tool synthesizes C4 camera trajectories.

Designing Trajectories for Quadrotors Our method for syn-
thesizing quadrotor camera trajectories is similar to the trajectory
synthesis methods introduced by Mellinger and Kumar [2011] and
Richter et al. [2013]. These methods make the observation that
there exists a reduced state space in which all smooth trajectories
are guaranteed to obey the physical equations of motion for quadro-
tors. Based on this observation, they synthesize trajectories by op-
timizing piecewise polynomials in the reduced state space. We use
a similar approach, but adapt it to quadrotor cinematography.

Quadrotors Equipped with Robotic Arms Our quadrotor cam-
era model builds on a growing literature describing physical mod-
els for quadrotors equipped with robotic arms [Lippiello and Rug-
giero 2012; Kim et al. 2013; Yang and Lee 2014; Ruggiero et al.
2015]. This literature is closely related to our work, in the sense that
the camera in our quadrotor camera model can be thought of as a
very short, very lightweight, single link, fully actuated robotic arm.
Whereas existing approaches focus on designing feedback control
policies to follow given trajectories, our approach focuses on syn-
thesizing these trajectories subject to high-level user constraints.

Object Tracking using Quadrotors Computer vision algorithms
and feedback control policies have been developed to track moving
target objects using quadrotors equipped with cameras [Teuliere
et al. 2011]. These approaches could be immediately applied to
quadrotor cinematography. However, existing approaches react to
moving target objects by optimizing the position of the quadrotor.
In contrast, we globally optimize the entire trajectory of the quadro-

1BOT & DOLLY is now defunct, and the specifications for the IRIS
camera control system are no longer publicly available.

tor, and we do not assume the presence of a particular target object.

Quadrotors in Computer Graphics Quadrotors have very re-
cently been applied to problems in computer graphics. Srikanth et
al. [2014] introduce a feedback control policy for maneuvering a
quadrotor with a non-orientable light attached to it. Their control
policy positions the quadrotor relative to a target object, so as to
achieve a particular lighting effect when viewed from a stationary
camera positioned elsewhere in the scene. As in our work, Srikanth
et al. computationally control quadrotors to achieve an aesthetic vi-
sual objective. However, they optimize the position of a light in a
scene, whereas we optimize the trajectory of a camera through a
scene.

3 Design Principles

In order to design more effective tools for quadrotor camera control,
we began by analyzing manuals on cinematography [Mascelli 1965;
Arijon 1976; Katz 1991], as well as conducting formative inter-
views. We interviewed six professional photographers and videog-
raphers. Their level of expertise with quadrotor cameras ranged
from novice to expert. We accompanied two of the quadrotor ex-
perts to professional quadrotor shoots. All participants primarily
fly quadrotors manually, but have used existing trajectory planning
tools. Each interview lasted approximately an hour. We asked them
30–40 questions pertaining to their setup, their preparations before
capture, their workflow during capture, their post-processing steps,
and their wish list for quadrotor cinematography. From this study,
we extracted a set of design principles for building effective quadro-
tor camera planning tools.

Allow Users to Design Shots Visually All participants were
primarily concerned with the visual contents of a shot. For this
reason, when flying the quadrotor manually, they relied heavily on
a real-time video feed from the camera to decide whether the cur-
rent shot captures their artistic intent. Therefore, an effective tool
for planning quadrotor camera trajectories should allow users to de-
sign shots visually.

Produce Visually Accurate Shot Previews Tools for designing
camera trajectories should provide a preview of the entire shot. This
preview needs to be visually accurate. In other words, the frames
from the preview shot need to be as visually similar as possible
to the real captured frames. Guaranteeing visual accuracy is chal-
lenging, because the physical dynamics of quadrotors impose con-
straints on the kinds of camera paths that can be executed. If a shot
planning tool does not consider these dynamics when synthesiz-
ing camera paths, the quadrotor can deviate significantly from the
intended shot during capture, reducing the accuracy of the visual
preview. Therefore, an effective tool should consider the physical
dynamics of quadrotors when synthesizing trajectories, in order to
create visually accurate shot previews.

Give Users Precise Timing Control Several participants ex-
pressed how critical it is to be able to control the timing of a shot.
Indeed, controlling the timing of a shot enables users to specify
ease-in and ease-out behavior, which is important in cinematog-
raphy [Arijon 1976; Lasseter 1987]. Therefore, an effective tool
should allow users to precisely control the shot’s visual progression
over time.

Consider Physical Hardware Limits Quadrotor cameras have
inherent physical limits, such as limited maximum thrust, limited
maximum velocity, and a limited range of joint angles that are

achievable on the camera gimbal. Attempting to fly a trajectory
that does not respect these physical limits can cause the quadrotor
to deviate significantly from the intended trajectory, or even crash.
Indeed, several participants reported destroying equipment in acci-
dents where they misjudged the safety of their camera trajectory or
the abilities of their hardware. Therefore, it is crucial for an effec-
tive tool to consider the physical limits of the aircraft.

Provide Users with Spatial Awareness Participants often rea-
soned about the path a camera takes through space. For example,
some participants verbally describe shots by saying “move from
here to there while keeping this in view” or “circle around a point”.
Moreover, users are concerned with the quadrotor’s safety around
obstacles. Therefore, an effective tool should provide a virtual envi-
ronment that is accurately aligned to the real shot location, in order
to provide users with meaningful spatial awareness.

Support Rapid Iteration and Provide Repeatability Cine-
matographers often perform multiple takes of the same shot [Mas-
celli 1965]. Between takes, they tweak elements of the scene until
they achieve their artistic vision. In support of this workflow, par-
ticipants expressed the need for tools that support iteration and re-
peatability with quadrotors. In outdoor environments where light-
ing and weather conditions can change rapidly and greatly affect
the quality of a shot, it is important for users to be able to repeat the
same shot multiple times. In addition, an effective tool should allow
users to rapidly iterate, supporting the creative process of exploring
and designing shots.

4 User Interface

We reify the design principles described in Section 3 into an interac-
tive tool for planning and capturing quadrotor camera shots (Figure
1). In our tool, the user specifies camera pose keyframes at specific
times in a virtual environment. Our tool synthesizes a camera tra-
jectory that obeys the physical equations of motion for quadrotors,
and interpolates between the user-specified keyframes.

In our tool, a camera pose keyframe consists of a look-at position,
and a look-from position. Our tool interpolates these vectors sepa-
rately to synthesize a camera pose trajectory. For simplicity, we al-
ways set the camera’s up vector equal to the world-frame up vector.
If artistic control of the camera’s up vector is desired, our keyframe
representation could be straightforwardly modified to include an up
vector.

Editing the Visual Content and Timing of Shots Our tool pro-
vides a 3D view of a virtual scene using GOOGLE EARTH (Figure
1a). The user can set keyframes in this view by moving the vir-
tual camera using a trackball interface. This interface enables the
user to design shots visually. Our tool also provides a 2D map view
of the scene using GOOGLE MAPS (Figure 1b). The user can set
keyframes in this view by dragging look-from and look-at markers
around the 2D map.

The user can add, edit, and delete keyframes using the 3D scene
view and the 2D map view. These views are linked: edits in one
view instantly update the other view. Whenever a keyframe is
added, edited, or deleted, our tool synthesizes a new camera trajec-
tory in real-time. Our tool draws the camera trajectory on the 2D
map view as a curve, and in the 3D scene view as a rollercoaster-
style track, to support spatial awareness.

The user can also change the total duration of her shot, and navi-
gate through time using a scrubber interface (Figure 1c). To set a
keyframe at a specific time, the user scrubs to that moment in time
and edits the camera pose, as described above. When the user clicks

Camera Path
Camera Pose

Keyframes

1 2

1

2

3

optimize

Control Points Easing Curve

Video Footage

UI

3

reparametrize

Camera Trajectory
as a Function of Time

Control Signals

Gimbal

Quadrotor

synthesize

Physical Camera Trajectory
Feasible

Trajectory

fly

user
iterates

UI

time time

progress progress

time

time

Figure 2: Overview of the major technical components of our system. We begin with two user-specified inputs: (1) camera pose keyframes in
a virtual environment (e.g., GOOGLE EARTH); and (2) a sequence of easing curve control points. From these inputs, we compute a smooth
camera path and a smooth easing curve. We optimize the smoothness of the camera path and easing curve in a way that obeys the physical
equations of motion for quadrotors. We re-paramterize the camera path, according to the easing curve, to produce a camera trajectory as a
function of time. We synthesize the control signals required for a quadrotor and gimbal to follow the camera trajectory. We plot these control
signals in our user interface, providing the user with visual feedback about the physical feasibility of the resulting trajectory. The user can
edit the resulting trajectory by editing camera pose keyframes and easing curve control points. Once the user is satisfied with the trajectory,
we command a quadrotor camera to execute the trajectory fully autonomously, capturing real video footage.

the Play button or moves the scrubber, our tool instantly plays back
a preview of the shot. This functionality, when combined with our
strategy for reasoning about the physical feasibility of camera tra-
jectories, allows the user to accurately preview her shot, and sup-
ports rapid iteration.

The user can edit distinct easing curves for look-at and look-from
position trajectories (Figure 1d). The user can add, edit, and delete
control points on these easing curves. Editing these easing curves
enables the user to precisely control the timing control of her shot.

Fixing Physically Infeasible Shots Our tool synthesizes camera
trajectories that are guaranteed to obey the physical equations of
motion for quadrotors. However, the user can specify shots in our
tool that exceed the physical limits of her quadrotor hardware. For
example, the user might specify two keyframes so close together
in time, but so far apart in space, that her quadrotor cannot fly fast
enough to capture the shot. Our tool provides the user with visual
feedback about the physical feasibility of her trajectory, notifying
the user if her intended trajectory violates the physical limits of her
hardware.

Every time the user edits her shot, our tool re-calculates dynamic
and kinematic quantities of interest along the camera trajectory in
real-time (e.g., gimbal joint angles, velocities, and thrust forces).
Our tool plots these quantities on a set of feasibility plots (Figure
1f). In each plot, our tool shows the physical limits of the quantity
with two horizontal red lines. If any dynamic or kinematic quantity
exceeds these physical limits, our tool highlights the corresponding
feasibility plot. Our tool also highlights any infeasible regions di-
rectly in the 3D scene view (Figure 1a), the 2D map view (Figure
1b), and on the easing curves (Figure 1d). In each of these views,
our tool colors each point along the trajectory according to the mag-
nitude of the feasibility violations that occur at that point. Based on
this visual feedback, the user can adapt her shot to the physical lim-
its of her hardware.

Capturing Real Video Footage At any time during the design
process, the user can save her shot. Once the user is pleased with
her shot, she can take a laptop running our tool, and her quadrotor,

to the approximate real-world starting location of her shot. The
user can initiate an automatic capture session by clicking the Start
Capture button (Figure 1g). Once the user clicks this button, our
tool commands a quadrotor camera to execute the user-specified
shot fully autonomously, capturing real video footage.

5 Technical Overview

We provide an overview of the major technical components of our
system in Figure 2. At the core of our system is a physical quadrotor
camera model, in which a rigid body quadrotor is attached to a cam-
era mounted on a gimbal (Section 6). In this model, the quadrotor
and the gimbal are physically coupled, which enables us to consider
their motion jointly.

We analyze the dynamics of our model, and show that camera tra-
jectories must be C4 continuous in order to obey the physical equa-
tions of motion for quadrotors. With this requirement in mind, we
derive an algorithm for synthesizing C4 continuous camera trajec-
tories from user-specified keyframes and easing curves (Section 7).
This algorithm enables users to design shots visually, and gives
users precise control over the timing of their shot. At a high level,
our approach is to optimize the smoothness of the camera trajec-
tory by solving a constrained quadratic minimization problem that
guarantees C4 continuity.

We then derive an algorithm to compute the control signals required
for a quadrotor and gimbal to follow any C4 continuous camera
trajectory (Section 8). This algorithm enables our tool to provide
the user with visually accurate shot previews, and visual feedback
about the physical feasibility of camera trajectories. At a high level,
our approach is to compute a trajectory through our quadrotor cam-
era’s state space that places the gimbal at the same world frame
pose as the camera we are trying to follow at all times. We use this
state space trajectory to solve for the quadrotor and gimbal control
signals.

Our algorithm for synthesizing camera trajectories is guaranteed to
produce trajectories that obey the physical equations of motion for
quadrotors. However, our algorithm might produce trajectories that
exceed the physical limits of a particular real-world quadrotor. As

⌧q⌧q

ftft

ugug

fefe

✓g✓g

✓q✓q

(b) Forces and Torques(a) Degrees of Freedom

uquq

uquq

pp

Figure 3: Overview of our quadrotor camera model, shown in 2D
for simplicity. (a) Degrees of freedom. We model the physical state
of a quadrotor camera with the following degrees of freedom: the
position of the quadrotor in the world frame, p; the orientation of
the quadrotor in the world frame, θq; and the orientation of the
gimbal in the body frame of the quadrotor, θg . Note that the ori-
entation of the gimbal is defined relative to the orientation of the
quadrotor. (b) Forces and torques. We maneuver the quadrotor by
applying thrust control at the propellors, uq . This generates a net
thrust force ft, and a net torque τq , at the quadrotor’s center of
mass. The only other force acting on the quadrotor is an external
force fe, which models effects like gravity, wind, and drag. We ori-
ent the camera by applying a torque control at the gimbal, ug . Note
that thrust is always aligned with the quadrotor’s local up direction.

discussed in Section 4, our strategy for handling these physically
infeasible trajectories is interactive.

Once the user is satisfied with her camera trajectory, we command
a quadrotor camera to execute the trajectory fully autonomously,
capturing real video footage (Section 9). At a high level, we use the
camera trajectory computed in Section 7 to drive a feedback con-
troller running on a real-world quadrotor. This feedback controller
compensates for unexpected disturbances, unmodeled forces, and
sensor noise, without having to explicitly re-compute the camera
trajectory. We execute the user’s intended camera trajectory by
sampling the position and velocity of look-at and look-from points
along the trajectory, and transmitting these quantities to the quadro-
tor. Strictly speaking, we could attempt to execute the camera tra-
jectories computed in Section 7, without going to the extra trouble
of computing control signals in Section 8. However, computing
control signals enables our tool to provide visual feedback about
the physical feasibility of trajectories, which is an important safety
feature. Moreover, computing control signals enables our tool to
certify the accuracy of visual shot previews, since the visual pre-
view will be accurate only if the trajectory is physically feasible.

6 A Quadrotor Camera Model

In this section, we introduce our physical quadrotor camera model,
in which a rigid body quadrotor is attached to a camera mounted
on a gimbal. We model the gimbal as a ball-and-socket joint that is
rigidly attached to the quadrotor’s center of mass. We provide an
overview of our model in Figure 3.

Our model assumes that the quadrotor can be maneuvered by apply-
ing thrust forces at the propellers, and that the camera can be ori-
ented by applying a torque to a ball-and-socket joint at the quadro-
tor’s center of mass. We refer to these forces and torques as con-
trol inputs, since we apply them to control the physical state of the
quadrotor camera. Our goal in this section is to express the equa-
tions of motion that relate the physical state of the quadrotor to the
control inputs.

Degrees of Freedom and Control Inputs We denote all the de-
grees of freedom in our quadrotor camera model with the vector

q. This 9-dimensional vector includes the position and orientation
of the quadrotor in the world frame, as well as the orientation of
the camera in the body frame of the quadrotor. We use Euler an-
gles to represent the orientation of the quadrotor and the orientation
of the camera. We denote all the control inputs in our model with
the vector u. This 7-dimensional vector includes the upward thrust
forces applied at each of the quadrotor’s four propellers, as well as
the torque applied at the gimbal.

Physical Limits We assume that we have limited control author-
ity over our quadrotor camera model, and that our quadrotor cam-
era model can only access a box-shaped region of its state space.
This allows us to model several common physical limitations of ex-
isting quadrotor camera systems: (1) propellers can only generate
bounded thrust; (2) quadrotors have maximum speeds imposed by
their internal flight control software; and (3) gimbals can only be
oriented within a particular frustum. We refer to constraints on q
and q̇ as state constraints. We refer to constraints on u as actuator
limit constraints.

Relating the Quadrotor Camera State to the Control Inputs
We relate the physical state of the quadrotor camera to the control
inputs as follows,

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u

subject to umin ≤ u ≤ umax

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max

(1)

where the matrix H models generalized inertia; the matrix C mod-
els generalized velocity-dependent forces like drag; the vector G
models generalized potential forces like gravity; the matrix B maps
from control inputs to generalized forces; and the inequalities rep-
resent the state constraints and actuator limit constraints of our sys-
tem. This equation fully determines the evolution of our quadrotor
camera model over time. Tedrake [2014] refers to the form of this
as manipulator form. The matrices in this equation, known as the
manipulator matrices, can be obtained by augmenting the quadro-
tor dynamics model presented by Mellinger and Kumar [2011] to
include a fully actuated 3 degree-of-freedom gimbal. We include
a concise definition for these matrices in Appendix A, and a more
detailed derivation in the supplementary material.

7 Synthesizing Virtual Camera Trajectories

In this section, we consider the problem of synthesizing a camera
trajectory from a sequence of user-specified camera pose keyframes
and easing curve control points. At a high level, our approach is
to smoothly interpolate our camera pose keyframes to produce a
camera path. Likewise, we smoothly interpolate our easing curve
control points to produce an easing curve. We optimize the smooth-
ness of these curves by solving a constrained quadratic minimiza-
tion problem that guarantees C4 continuity. We justify this conti-
nuity requirement explicitly in Section 8.

We follow the standard practice in computer graphics [Parent 2007]
of decoupling the spatial and temporal specification of camera mo-
tion: the camera path defines where the camera should go, but does
not define when the camera should go there. In order to define
a camera trajectory as a function of time, we re-parameterize the
camera path according to the progression in the easing curve.

Representing Camera Paths and Easing Curves as Piecewise
Polynomials Any piecewise polynomial representation of degree
5 or higher has enough free coefficients to enforce C4 continuity.
In the supplementary material, we evaluate alternative polynomial

representations for quadrotor camera paths. In our experience, we
found that 7th degree piecewise polynomials produce the smoothest
and most reasonably bounded control signals for quadrotors. For
this reason, we choose to represent camera paths and easing curves
using 7th degree piecewise polynomials.

We represent curves through 3D space with a distinct piecewise
polynomial for each dimension. We represent camera pose trajec-
tories with two distinct piecewise polynomial curves through 3D
space: one for the look-from point, and another for the look-at point.

Optimizing the Smoothness of Piecewise Polynomials Con-
straining a 7th degree piecewise polynomial to be C4 continuous
does not fully determine its coefficients. To choose a particular set
of coefficients, our approach is to optimize the overall smoothness
of the resulting curve. We describe our approach for optimizing the
smoothness of our curves in this subsection.

Suppose we are given k+ 1 scalar keyframe values, v0:k, placed at
the scalar parameter values, u0:k. We would like to find k distinct
polynomial segments that stitch together to produce a C4 contin-
uous curve that exactly interpolates our keyframes, and we would
like the resulting curve to be as smooth as possible. Our approach
here is similar to the quadrotor trajectory synthesis approach of
Mellinger and Kumar [2011].

Stating our problem formally, let c be the vector of all the polyno-
mial coefficients for all the distinct polynomial segments. Let di,j
be the j th derivative of the piecewise polynomial curve p with re-
spect to the scalar parameter u at keyframe i. Let d be the vector
of all such derivatives. We would like to find the optimal set of
coefficients and derivatives, c∗ and d∗ respectively, as follows,

c∗,d∗ = arg min
c,d

k−1∑
i=0

∫ 1

0

(
d4

dū4
i

pi

)2

dūi

subject to pi(0) = vi pi(1) = vi+1

dj

dūji
pi(0) = wjidi,j

dj

dūji
pi(1) = wjidi+1,j

(2)

where pi is the ith polynomial segment; ūi = u−ui
ui+1−ui

∈ [0, 1] is
a normalized scalar parameter used to evaluate pi; j ∈ {1, 2, 3, 4}
is an index that refers to the various derivatives of our polynomial
segments; and wi = ui+1 − ui is the width of the ith polynomial
segment in non-normalized parameter space.

The objective function in this optimization problem attempts to
make the resulting curve as smooth as possible. The equality con-
straints in this optimization problem ensure that our keyframes are
correctly interpolated, and that the derivatives of adjacent polyno-
mial segments match, taking into account that some segments are
wider than others in non-normalized parameter space. In the sup-
plementary material, we evaluate alternative objective functions. In
our experience, we found that minimizing the 4th derivative of our
polynomials produced the smoothest and most reasonably bounded
control signals for quadrotors. For this reason, we choose to mini-
mize the 4th derivative of our polynomials.

We can express the optimization problem in equation (2) as a con-
strained quadratic minimization problem as follows,

x∗ = arg min
x

xTQx subject to Ax = b (3)

where x is the concatenated vector of our coefficients and deriva-
tives; Q is the symmetric positive definite matrix obtained by ex-

panding the expression
∫ 1

0

(
d4

dū4
i
pi
)2

dūi from equation (2); A is

the matrix and b is the vector that can be obtained by expressing the
equality constraints from equation (2) in matrix form. The problem
in equation (3) can be solved by solving the following linear sys-
tem, [

2Q AT

A 0

] [
x∗

λ∗

]
=

[
0
b

]
(4)

where λ is the Lagrange multiplier variable obtained by transform-
ing equation (3) into unconstrained form [Boyd and Vandenberghe
2004].

When solving the constrained quadratic minimization problem in
this section, we found that spacing our camera pose keyframes in
non-normalized parameter space according to a chordal parameter-
ization [Yuksel et al. 2011] helped to produce well-behaved smooth
camera paths. To that end, we also constrained the 1st derivatives
at the endpoints of our camera path as we would for Natural Cubic
Splines [Bartels et al. 1987].

Re-parameterizing Camera Paths as Functions of Time At
this point, we have defined a camera path through space, and an
easing curve that defines the progress of the camera over time. In
order to define a camera trajectory as a function of time, we re-
parameterize the path according to the progression given in the eas-
ing curve using standard numerical techniques [Guenter and Parent
1990].

Our camera path is C4 continuous with respect to u, and our easing
curve is C4 continuous with respect to time. Therefore our camera
trajectory will be C4 continuous with respect to time after this re-
parameterization step.

8 Synthesizing State Space Trajectories and
Control Trajectories

In this section, we consider the problem of synthesizing a state
space trajectory and corresponding control trajectory that will
command our quadrotor and gimbal to follow a given virtual cam-
era trajectory in the world frame. At a high level, our approach is
to compute a trajectory through our quadrotor camera’s state space,
that places the gimbal at the same world frame pose as the virtual
camera we are trying to follow at all times. We then substitute
this state space trajectory into equation (1) to solve for the corre-
sponding control trajectory. Note that the quadrotor’s orientation
is partially determined by its direction of acceleration (see Listing
1). Therefore, we must use the available degrees of freedom in the
gimbal, to align the orientation of the gimbal with the orientation
of the virtual camera we are trying to follow.

Computing a State Space Trajectory In this subsection, we
compute a state space trajectory for our quadrotor camera as a func-
tion of a given virtual camera trajectory. We assume that the virtual
camera trajectory has been discretized into a sequence of T + 1
camera poses evenly spaced in time. We also assume that the vir-
tual camera trajectory is C4 continuous. We justify this continuity
requirement explicitly at the end of this section.

We begin by numerically computing the linear acceleration of the
virtual camera along the trajectory using finite differences. At each
moment in time along the trajectory, we solve for the degrees of
freedom in our quadrotor camera model as follows,

1. Set the position of the quadrotor equal to the position of the
virtual camera.

2. Compute the orientation of the quadrotor based on the accel-
eration and orientation of the virtual camera (see Listing 1). In
this step, we align the quadrotor’s orientation to its direction

of acceleration. This approach guarantees that the quadrotor’s
orientation is always consistent with equation (1). Or stated
more precisely, that the state space trajectory we compute in
this section, when substituted into equation (1), always yields
a left hand side that is in the column space of the matrix B.

Our algorithm here is similar to the algorithm presented by
Mellinger and Kumar [2011]. However, we adapt their algo-
rithm to determine the quadrotor’s orientation from the vir-
tual camera’s orientation (and its direction of acceleration),
rather than requiring the quadrotor’s yaw angle to be speci-
fied explicitly. This is an important practical difference, since
it allows users to specify shots visually, rather than having to
explicitly specify yaw angles.

3. Compute the orientation of the gimbal in the body frame of
the quadrotor, based on the orientation of the virtual camera
and quadrotor in the world frame. For this step, we use the
relationship RW,C = RW,QRQ,G , where RW,C is the rota-
tion matrix that represents the orientation of the virtual camera
in the world frame; RW,Q is the rotation matrix that repre-
sents the orientation of the quadrotor in the world frame; and
RQ,G is the rotation matrix that represents the orientation of
the gimbal in the body frame of the quadrotor.

At this point, we have solved for the position and orientation of our
quadrotor, as well as the orientation of our gimbal, at every mo-
ment in time along the discretely sampled virtual camera trajectory.
We compute the Euler angle representations of the quadrotor and
gimbal orientations using standard numerical techniques [Diebel
2006]. In doing so, we have solved for the state space trajectory,
corresponding to the given virtual camera trajectory.

Uniqueness The state space trajectory we compute above is not
unique. There are other state space trajectories that will follow the
given virtual camera trajectory. For example, the quadrotor could
be at a different yaw angle, and the gimbal could also be at a dif-
ferent orientation to compensate. Among this family of valid state
space trajectories, our algorithm computes the state space trajec-
tory that sets the gimbal’s yaw angle to zero, while minimizing the
magnitude of the gimbal’s pitch angle (Listing 1, lines 3-5). This
approach means our algorithm can be used without modification on
quadrotor cameras with 2 degree-of-freedom gimbals, as well as the
3 degree-of-freedom gimbal we assume in our model.

Computing a Control Trajectory In this subsection, we compute
a control trajectory u0:T , as a function of our state space trajec-
tory q0:T . We begin by computing the 1st and 2nd derivatives of
our state space trajectory, q̇0:T and q̈0:T respectively, using finite
differences. We compute our control trajectory by repeatedly sub-
stituting q, q̇, and q̈ into equation (1), and solving for u, at each
moment in time along the discretely sampled state space trajectory.
We use the Moore-Penrose pseudoinverse of B to invert equation
(1), which in this case, is guaranteed to yield an exact unique so-
lution for u. This is because we explicitly constructed q0:T to be
consistent with the equations of motion for our system, so the left
hand side of equation (1) is always in the column space of B, and
B is always full column rank. We include a proof that B is always
full column rank in the supplementary material.

C4 Continuity A virtual camera trajectory must be at least C4

continuous with respect to time if we hope to synthesize a control
trajectory to follow it. At a high level, this continuity requirement
arises from the fact that a quadrotor can only apply thrust forces
along its local up axis. Indeed, we see in Listing 1 (lines 1–3) that
we use the 2nd derivative of the virtual camera position p̈c to solve
for the quadrotor’s orientation degrees of freedom. Moreover, we

Input:
• Acceleration of the virtual camera in the world frame, p̈c.
• Virtual camera’s local x axis (i.e., the look-at vector) in the world frame,

xc.
• External force in the world frame, fe.
• Mass of the quadrotor camera, m.

Output:
• Rotation matrix representing the quadrotor’s orientation in the world

frame, RW,Q.

1: f ← mp̈c

2: ft ← f − fe
3: yq ← normalized ft
4: zq ← normalized yq × xc

5: xq ← normalized zq × yq

6: RW,Q ← the rotation matrix defined by the axes xq , yq , zq

Listing 1: Computing the orientation of the quadrotor in the world
frame. We begin by substituting linear acceleration and mass into
Newton’s Second Law to solve for net force (line 1). We make the
observation that we can always decompose the net force acting on
our quadrotor into a thrust force and an external force, where the
external force models effects like gravity, wind, and drag. With this
observation in mind, we solve for thrust force (line 2). We make
the observation that our quadrotor model can only generate thrust
forces along its local y axis. With this observation in mind, we nor-
malize the thrust force and set the quadrotor’s local y axis equal
to the normalized thrust force vector (line 3). This approach guar-
antees that the quadrotor’s orientation is always consistent with
equation (1). Or stated more precisely, that the state space trajec-
tory we compute in Section 8, when substituted into equation (1),
always yields a left hand side that is in the column space of the
matrix B. In our algorithm, the quadrotor’s local y axis, in combi-
nation with the virtual camera’s local x axis, uniquely determines
the orientation of the quadrotor (lines 4–6).

see in equation (1) that we use the 2nd derivative of the quadro-
tor’s degree-of-freedom vector q̈ to solve for the control input u.
Therefore, the control input u is a function of the 4th derivative of
the virtual camera trajectory. If a virtual camera trajectory is not at
least C4 continuous, then the control input will not be well-defined
across the trajectory. This continuity requirement is also noted by
Mellinger and Kumar [2011].

Unbounded Control Inputs The state space trajectory q0:T we
compute in this section is guaranteed to satisfy the equations of
motion given in equation (1). In other words, there exists some
control trajectory u0:T that will follow q0:T . However, the control
inputs required to follow q0:T might exceed the physical limits of a
particular real-world quadrotor. In general, it is not guaranteed that
u0:T and q0:T will satisfy the actuator limit constraints and state
constraints given in equation (1). We must take extra care to ensure
that q0:T and u0:T satisfy these constraints. We address this issue
interactively in our user interface, as described in Section 4.

9 Real-Time Control System and Hardware
Platform

In this section, we describe the real-time control system and hard-
ware platform we use to execute camera trajectories autonomously
and capture real video footage.

Real-Time Control System We show a block diagram of our
real-time control system in Figure 4. We build our real-time control
system on top of the open source ARDUPILOT autopilot software
[APM 2015]. The ARDUPILOT software runs on board the quadro-

GROUND

Look-From
 Position,
Velocity

Look-At
Position,
Velocity

Trajectory
Follower

5Hz

Look-At
Position

Controller
50Hz

Sensors
&

Actuators

Motor
Controller

490Hz

Gimbal
Controller

2000Hz

Desired Body-frame Thrust

Desired
World-frame
Vehicle Yaw

Desired World-frame
Camera Orientation

Attitude
Controller

100Hz

Motor
Speeds

Desired
World-frame

Vehicle
Roll & Pitch

Feasible Trajectory,
Time Scaling Factor

Desired
Body-frame

Torques

State Estimation
50Hz

Look-From
Position

Controller
100Hz

VEHICLE

System State

System State

Figure 4: Block diagram of our real-time control system for executing camera trajectories. On a ground station (left), our trajectory follower
(white) samples the camera trajectory, transmitting the sampled position and velocity of look-at and look-from points to the quadrotor.
Our trajectory follower allows the user to optionally adjust a time scaling factor, to execute the trajectory faster or slower. On board the
quadrotor (right), the higher-level look-from and look-at position controllers interface with a lower-level attitude controller (yellow) and
motor controller (green), similar to those described by Kumar and Michael [2012].

tor, and provides a hierarchical feedback controller for following
camera trajectories, similar to the controller described by Kumar
and Michael [2012]. The ARDUPILOT feedback controller takes
as input the position and velocity of look-at and look-from points
along a camera trajectory. Our real-time control system runs on
a ground station. Our system executes the user’s intended camera
trajectory by sampling the position and velocity of look-at and look-
from points along the trajectory, and transmitting these quantities to
the quadrotor.

Time Scaling and Safety While the camera trajectory is being
executed, our real-time control system allows the user to option-
ally adjust a time scaling factor. By default, our system samples
the camera trajectory uniformly in time. If the user adjusts the time
scaling factor, our system applies a linear scaling to the time step
used to determine the next sampling location along the trajectory.
Using our time scaling functionality, we implement a full stop com-
mand, which is an important safety feature. Setting the time scaling
factor to 0 pauses the quadrotor at its current position. This allows
the user to abort capture at any time, and helps to avoid crashes.

Hardware Platform Our hardware platform consists of an 3D
ROBOTICS IRIS+ quadrotor [3D Robotics 2014] running the open
source ARDUPILOT autopilot software [APM 2015] on a PIXHAWK
autopilot computer [Meier et al. 2012]. We equip our quadrotor
with a 2-axis gimbal and a GOPRO HERO 4 BLACK camera. At
the time of publication, this hardware setup is priced at $1300, and
is representative of an entry-level quadrotor for aerial cinematogra-
phy.

System Identification We determined the system parameters
used in our quadrotor camera model, which are specific to our hard-
ware, partially through direct measurement and partially through
published engineering specifications. We used a dynamometer to
measure the maximum force and torque our rotors could generate,
and estimated the moment of inertia from the quadrotor’s mass and
shape. We used the maximum lean angles, maximum velocities,
and maximum accelerations published by the ARDUPILOT com-
munity [APM 2015].

10 Evaluation and Discussion

In this section, we describe the user study we conducted to evaluate
our tool, and discuss our key findings.

User Study We performed a user study aiming to understand
whether our tool enables the creation of shots that would be chal-
lenging to capture otherwise. We recruited two expert cinematog-
raphers, and two novice cinematographers with computer graphics
experience. Both of our expert cinematographers had extensive ex-
perience manually flying quadrotors for cinematography.

After demonstrating the capabilities of our tool in a 30 minute tuto-
rial, we gave all four participants identical tasks. We first tasked
them with creating one shot featuring the 285 foot tall Hoover
Tower (i.e., the instructed shot). The tower was selected for its
striking appearance and large scale, providing an opportunity for
interesting shots that are well-suited for quadrotor cinematography.
We also tasked participants with creating a second shot of their own
choosing (i.e., the freeform shot). We instructed them to create and
refine shots that are cinematically interesting, and within the physi-
cal limits of our quadrotor hardware, as visualized in our tool. They
had 90 minutes to create these shots, during which we were avail-
able to answer questions. Our tool saved a log and screen recording
of each session. Afterwards, they accompanied us to capture their
shots, watched the resulting videos, and filled out an exit question-
naire.

All four participants successfully completed the two tasks. We
show the shots from our users in Figure 5, and henceforth we re-
fer to the shots using the lettering in this figure. The participants’
shots included a wide variety of camera motions. None of the shots
violated any of the kinematic or dynamic limits shown on the feasi-
bility plots in our tool. We were able to successfully capture all
eight shots. We encourage readers to watch our supplementary
video, where we show these real-world shots, and the virtual pre-
views from our tool, in a series of side-by-side comparisons.

Novices and Experts Successfully Designed Challenging
Shots We asked the expert cinematographers to describe what el-
ements were challenging about the shots they created, if they were
to capture them with existing approaches for quadrotor cinematog-
raphy. Each expert identified camera motions in their shots that
would either take many attempts, or would have to be modified to
be less challenging. We identified similar camera motions in the
novice shots (see Figure 6). We summarize the similarities between
novice and expert shots as follows,

• Expert shot (c) required continuous re-orientation of the cam-
era relative to the flight path, with the look-from trajectory in
red arcing away from a fixed look-at point. We found a similar
arcing motion around a fixed look-at point in novice shots (g)

Expert 1 Expert 2 Novice 1 Novice 2

In
st

ru
ct

ed
 S

ho
t

Fr
ee

fo
rm

 S
ho

t
a c

b

e

fd h

g

Figure 5: Camera shots created by the two experts (left) and two novices (right) in our user study. The look-from and look-at trajectories for
each shot are shown in red and blue respectively. The shots created by our participants contain a wide variety of camera motions.

N
ov

ic
e

1

 E
xp

er
t 1

Figure 6: Novices and experts successfully designed shots with
challenging camera motions using our tool. The expert shot (top)
is especially challenging to execute manually, since it requires
smoothly changing the camera orientation to look down at Hoover
Tower exactly as the quadrotor flies over it. The novice shot (bot-
tom) contains a similar camera motion.

and (h). This camera motion is difficult to execute manually,
because it requires continuously and precisely re-orienting the
camera during flight.

• Expert shot (a) required flying straight towards a point over a
long distance, which we also found in novice shot (f). This
camera motion is difficult to execute manually, since small
initial errors in the direction of flight have to be corrected,
leading to visual artifacts in the resulting video.

• Expert shot (a) required smoothly adjusting the rate of cam-
era re-orientation, to end at a specific orientation at a specific
time. We found this camera motion in novice shot (a). We
show these two shots in Figure 6. This camera motion is espe-
cially difficult to execute manually. The camera must translate
towards a point while tilting down, so that the end of the tilt-
ing motion exactly coincides with being above the tower, all
while approaching the tower in a straight line. The expert that
designed shot (a) remarked that executing such a shot manu-
ally would require approximately 20 attempts.

This finding suggests that users can successfully design compelling
shots with challenging camera motions using our tool, regardless of
their level of expertise with quadrotors.

Previewing Shots Visually was Useful Our exit survey asked
participants to identify the most useful feature of our user interface,
and rank the features in our user interface on a 5-point scale from

 2

 0

 -2

 -4

 120

 100

 80

 60 0 20 40 60 80

m
et

er
s

Time (seconds)

 120

 100

 80

 60

m
et

er
s /

 se
co

nd

0 20 40 60 80

 2

 0

 -2

 -4

Time (seconds)m
et

er
s /

 se
co

nd

0 20 40 60 80
Time (seconds)

0 20 40 60 80

m
et

er
s

Time (seconds)

Velocity: Vertical Velocity: Vertical

Altitude Above Sea LevelAltitude Above Sea Level

Revision 7 Revision 8

Figure 7: Participants were able to modify infeasible shots into
feasible shots using the visual feedback we provide in our tool. After
his 7th revision, Expert 1 found that his shot was infeasible (left).
He edited both the altitude and timing of 3 keyframes to create a
feasible shot as his 8th revision (right). Horizontal red lines indicate
physical limits of our quadrotor hardware.

not useful to indispensable. Three of the four participants identified
the ability to visually preview their shot as being the most useful,
and all users rated this feature as a 4 or higher. Indeed, Figure 1
shows that our visual preview accurately estimates the appearance
of recorded video footage. This finding validates our approach of
enabling users to design shots visually, and highlights the impor-
tance of ensuring physical feasibility during the design process.

Controlling the Timing of Shots was Useful All participants
used the easing curves to refine the timing of their shots. Partic-
ipants used the easing curves to modify the pacing of their shots,
and to fix feasibility violations. In all shots, participants adjusted
the default easing curve control points. Of the eight shots created,
six featured additional control points added by the participant. This
finding validates our approach of enabling users to precisely control
the timing of their shots.

Visual Feasibility Feedback was Useful, Although Some Par-
ticipants Would Have Preferred an Automatic Solution All of
our participants responded to the visual feasibility feedback in our
tool. Users successfully modified their shots until they were within
the physical limits of our hardware, as shown on the feasibility plots
in our tool. Figure 7 shows Expert 1 modifying both the altitude and
timing of three keyframes to stay within the vertical speed limit of
our quadrotor. However, participants were divided in their opin-
ions about our feasibility plots. One participant rated it as the best
part of the tool. He described it as essential to creating shots at

 3

 2

 1

 0
0 10 20 30

Time (seconds)

Position Error
(meters)

Expert 1 Freeform Shot Novice 2 Instructed Shot

0 20 40 60 80 100 120

0.8

0.6

0.4

0.2

 0

Time (seconds)

(meters / second)
Velocity Error

Time (seconds)

0.8

0.6

0.4

0.2

 0
0 10 20 30

(meters / second)
Velocity Error

Time (seconds)
0 20 40 60 80 100 120

 3

 2

 1

 0

Position Error
(meters)

Figure 8: Position and velocity error of our quadrotor for the
longest (left) and shortest (right) shots. The position error is less
than 3.01m at all times, and the velocity error is less than 0.80m/s
at all times. Note that the horizontal scaling varies varies on the
left and right subplots.

the physical limits of the hardware. Another participant expressed
difficulty knowing exactly how to tweak trajectories in response to
the visual feedback. This finding suggests that some users would
prefer an automatic solution for fixing feasibility issues, while oth-
ers like precise control over their shots. We believe that developing
an automatic solution to fix feasibility violations is an interesting
direction for future work.

Accuracy To quantify how well our quadrotor camera system fol-
lows trajectories, we compared the intended trajectories created by
our users, to the actual trajectories executed by our quadrotor (see
Figure 8). The average position error across all shots was 1.12m
(σ = 0.57), and was never greater than 3.01m. The average veloc-
ity error across all shots was 0.11m/s (σ = 0.10), and was never
greater than 0.80m/s. In general, our system is limited by the po-
sitioning and pointing accuracy of our quadrotor. This limitation
makes close-up shots particularly challenging, where small errors
in position lead to more noticeable visual errors. However, our par-
ticipants responded positively when they saw the captured footage
for the shots they created. This finding suggests that the level of
accuracy achievable with current-generation quadrotor hardware is
sufficient to obtain a variety of compelling shots.

Concluding Remarks Overall, all participants were enthusiastic
about using our system. Experts appreciated having a powerful tool
to visually plan complex trajectories and execute repeatable takes
(e.g. Expert 1 remarked “Normally I fly less ambitious paths to
avoid making mistakes!” and “I love how I can get the same shot,
take after take, day after day!”). Novices were particularly enthu-
siastic about being able to capture high-quality video footage with
quadrotors without having experience flying them (e.g., Novice 2
remarked, “I liked how it turned a ‘drone flying problem’ into a
‘drawing a curve in space problem’. I don’t know how to fly a
drone and don’t want to, but I find drawing in 3D very intuitive.’’).

11 Conclusions

We introduced a set of design principles for quadrotor shot plan-
ning tools. Based on these principles, we built a tool for designing
quadrotor camera shots. Specifically, we added four components to
current quadrotor mission planning tools: (1) visual shot design; (2)
virtual preview; (3) precise timing control; and (4) visual feasibility
feedback. Using our tool, both novices and expert users designed
compelling shots that would be challenging to create otherwise. We
successfully and autonomously captured all shots with reasonable
accuracy on a real quadrotor camera platform.

In the future, we believe quadrotors will enable many creative appli-
cations beyond the pre-scripted aerial cinematography shown in this
paper. Quadrotor cameras might soon be able to autonomously film
a person skiing down a mountain, or a pack of wild animals hunting
prey. By flying the same trajectory repeatedly, quadrotor cameras
could also enable new kinds of highly dynamic time-lapse video
footage. Moving beyond the domain of cinematography, quadrotor
cameras could help to reconstruct virtual 3D models of the physical
world with unprecedented coverage and scale.

Acknowledgements

We thank the anonymous reviewers for their valuable feedback;
Maxine Lim for her assistance in creating figures, and for design-
ing our project website; Jane E, James Hegarty, Wilmot Li, and
Jerry Talton for their valuable feedback on early drafts of this pa-
per; Stephen Boyd for the helpful discussion about the optimization
problem in Section 7; Andrew Tridgell, Randy MacKay, and the
ARDUPILOT team for their software support; 3D ROBOTICS for
their hardware support; the professional cinematographers we in-
terviewed, as well as our user study participants, for their time and
valuable insights. This work was supported in part by a NSERC
Alexander Graham Bell Canada Graduate Scholarship. Finally, we
dedicate this paper in loving memory of our dear friend and valued
collaborator, Floraine Berthouzoz.

References

3D ROBOTICS, 2014. IRIS+. http://3drobotics.com/
iris/.

3D ROBOTICS, 2015. Solo. http://3drobotics.com/
solo/.

APM, 2015. APM Autopilot Suite. http://ardupilot.
com/.

ARIJON, D. 1976. Grammar of the Film Language. Hastings
House Publishers.

BARTELS, R. H., BEATTY, J. C., AND BARSKY, B. A. 1987. An
Introduction to Splines for use in Computer Graphics & Geo-
metric Modeling. Morgan Kaufmann Publishers.

BOYD, S., AND VANDENBERGHE, L. 2004. Convex Optimization.
Cambridge University Press.

CHRISTIE, M., OLIVIER, P., AND NORMAND, J.-M. 2008. Cam-
era control in computer graphics. Computer Graphics Forum 27,
8.

DIEBEL, J., 2006. Representing attitude: Euler angles, unit quater-
nions, and rotation vectors.

DJI, 2015. DJI Go. http://www.dji.com/product/
goapp.

DJI, 2015. DJI Ground Station. http://www.dji.com/
product/pc-ground-station.

GUENTER, B., AND PARENT, R. 1990. Motion control: Com-
puting the arc length of parametric curves. Computer Graphics
Applications 10, 3.

HSU, W.-H., ZHANG, Y., AND MA, K.-L. 2013. A multi-criteria
approach to camera motion design for volume data animation.
Transactions on Visualization and Computer Graphics (Proc.
SciVis 2013) 19, 12.

KATZ, S. D. 1991. Film Directing Shot by Shot. Butterworth
Publishers.

http://3drobotics.com/iris/
http://3drobotics.com/iris/
http://3drobotics.com/solo/
http://3drobotics.com/solo/
http://ardupilot.com/
http://ardupilot.com/
http://www.dji.com/product/goapp
http://www.dji.com/product/goapp
http://www.dji.com/product/pc-ground-station
http://www.dji.com/product/pc-ground-station

KIM, S., CHOI, S., AND KIM, H. J. 2013. Aerial manipulation
using a quadrotor with a two DOF robotic arm. In Intelligent
Robots and Systems (IROS) 2013.

KUMAR, V., AND MICHAEL, N. 2012. Opportunities and chal-
lenges with autonomous micro aerial vehicles. International
Journal of Robotics Research 31, 11.

LASSETER, J. 1987. Principles of traditional animation applied to
3D computer animation. In SIGGRAPH 1987.

LIPPIELLO, V., AND RUGGIERO, F. 2012. Exploiting redundancy
in cartesian impedance control of UAVs equipped with a robotic
arm. In Intelligent Robots and Systems (IROS) 2012.

MASCELLI, J. 1965. The Five C’s of Cinematography. Silman-
James Press.

MEIER, L., TANSKANEN, P., HENG, L., LEE, G. H., FRAUN-
DORFER, F., AND POLLEFEYS, M. 2012. PIXHAWK: A micro
aerial vehicle design for autonomous flight using onboard com-
puter vision. Autonomous Robots 33, 1–2.

MELLINGER, D., AND KUMAR, V. 2011. Minimum snap tra-
jectory generation and control for quadrotors. In International
Conference on Robotics and Automation (ICRA) 2011.

OSKAM, T., SUMNER, R. W., THUEREY, N., AND GROSS, M.
2009. Visibility transition planning for dynamic camera control.
In Symposium on Computer Animation (SCA) 2009.

PARENT, R. 2007. Computer Animation: Algorithms and Tech-
niques. Morgan Kaufmann Publishers.

RICHTER, C., BRY, A., AND ROY, N. 2013. Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor environ-
ments. In International Symposium of Robotics Research (ISRR)
2013.

RUGGIERO, F., TRUJILLO, M., CANO, R., ASCORBE, H., VIG-
URIA, A., PEREZ, C., LIPPIELLO, V., OLLERO, A., AND SI-
CILIANO, B. 2015. A multilayer control for multirotor UAVs
equipped with a servo robot arm. In International Conference
on Robotics and Automation (ICRA) 2015.

SRIKANTH, M., BALA, K., AND DURAND, F. 2014. Compu-
tational rim illumination with aerial robots. In Computational
Aesthetics (CAe) 2014.

TEDRAKE, R., 2014. Underactuated robotics: Algorithms for
walking, running, swimming, flying, and manipulation (course
notes for MIT 6.832). http://people.csail.mit.edu/
russt/underactuated/.

TEULIERE, C., ECK, L., AND MARCHAND, E. 2011. Chasing
a moving target from a flying UAV. In Intelligent Robots and
Systems (IROS) 2011.

YANG, H., AND LEE, D. 2014. Dynamics and control of quadro-
tor with robotic manipulator. In International Conference on
Robotics and Automation (ICRA) 2014.

YUKSEL, C., SCHAEFER, S., AND KEYSER, J. 2011. Parame-
terization and applications of Catmull-Rom curves. Computer
Aided Design 43, 7.

A Defining the Quadrotor Camera Manipula-
tor Matrices

In this appendix, we define the quadrotor camera manipulator ma-
trices, attempting to be as concise as possible. We include a detailed
derivation of these matrices in the supplementary material.

We begin by defining the layout of our degree-of-freedom vector q,

and our control vector u, as follows,

q =

 p
eq
eg

 u =

[
uq
ug

]
(5)

where p is the position of the quadrotor’s center of mass; eq is the
vector of Euler angles representing the quadrotor’s orientation in
the world frame; eg is the vector of Euler angles representing the
orientation of the gimbal in the body frame of the quadrotor; uq is
the thrust control we apply at the quadrotor propellors; and ug is
the torque control we apply at the gimbal.

We express the manipulator matrices for our quadrotor camera sys-
tem as follows,

H(q) =

mI3×3 03×3 03×3

03×3 IqRQ,WAq 03×3

03×3 03×3 Ag


C(q, q̇) =03×3 03×3 03×3

03×3 IqRQ,WȦq −
(
IqRQ,WAq ėq

)
×RQ,WAq 03×3

03×3 03×3 Ȧg


G(q) =

 −fe
03×1

03×1


B(q) =

RW,QMf 03×3

Mτ 03×3

03×4 I3×3

 (6)

where m is the mass of the quadrotor camera; Iq is the inertia ma-
trix of the quadrotor camera; RW,Q is the rotation matrix that rep-
resents the quadrotor’s orientation in the world frame (i.e., the rota-
tion matrix that maps vectors from the body frame of the quadrotor
into the world frame); RQ,W is the rotation matrix that maps vec-
tors from the world frame into the body frame of the quadrotor; Aq

is the matrix that relates the quadrotor’s Euler angle time deriva-
tives to its angular velocity in the world frame; Ag is the matrix
that relates the gimbal’s Euler angle time derivatives to its angular
velocity in the body frame of the quadrotor; fe is the external force;
Mf is the matrix that maps the control input at each of the quadro-
tor’s propellers into a net thrust force oriented along the quadrotor’s
local y axis; Mτ is the matrix that maps the control input at each
of the quadrotor’s propellers into a net torque acting on the quadro-
tor in the body frame; 0p×q is the p × q zero matrix; Ik×k is the
k × k identity matrix; and the notation (a)× refers to the skew-
symmetric matrix, computed as a function of the vector a, such that
(a)× b = a× b for all vectors b.

Our expressions for the quadrotor camera manipulator matrices de-
pend on the matrices, Mf and Mτ . We define these matrices as
follows,

Mf =

0 0 0 0
1 1 1 1
0 0 0 0


Mτ =

 dsα dsβ −dsβ −dsα
γ −γ γ −γ

−dcα dcβ dcβ −dcα

 (7)

where d, α, β, and γ are constants related to the physical design of
a quadrotor: d is the distance from the quadrotor’s center of mass
to its propellers; α is the angle in radians that the quadrotor’s front
propellers form with the quadrotor’s positive x axis; β is the angle
in radians that the quadrotor’s rear propellers form with the quadro-
tor’s negative x axis; γ is the magnitude of the in-plane torque gen-
erated by the quadrotor propeller producing 1 unit of upward thrust
force; ca = cos a and sa = sin a.

Note that our expressions for the quadrotor camera manipulator ma-
trices, in particular our expressions for Aq and Ag , depend on our
choice of Euler angle conventions. See our derivation in the sup-
plementary material for details.

http://people.csail.mit.edu/russt/underactuated/
http://people.csail.mit.edu/russt/underactuated/

