
TOOLS TO FACILITATE

AUTONOMOUS QUADROTOR CINEMATOGRAPHY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Niels Joubert

June 2017

Abstract

There is considerable interest in using orientable cameras mounted on unmanned quadrotor

aircraft for cinematography. These quadrotor cameras can fly to unique vantage points and

execute dynamic camera moves in 3D space. Unfortunately, traditional methods of using

quadrotor cameras to capture video, inherited from methods for manually piloting remote-

controlled aircraft, does not consider the needs of cinematographers and requires much skill

and dexterity. In this thesis, we present an alternative approach. Our key insight is to reify

concepts from traditional and virtual filmmaking into tools for cinematographers. These

tools enable the user to express their cinematic intent directly, while we automate flying

the quadrotor camera.

First, we build a tool for designing and autonomously executing quadrotor-based camera

shots. Our tool enables the user to compose shots visually using keyframes, and precisely

specify shot timing using easing curves. The user can preview their resulting shot in a

virtual environment before flying, and automatically capture shots in the real world with a

single button click using commercially available quadrotors.

Since some visual compositions of shots are more favored than others, we next present a

tool that automatically computes static shots based on well-established visual composition

principles and canonical shots from cinematography literature. Furthermore, our tool cal-

culates feasible, safe, and visually pleasing transitions between shots using a novel real-time

trajectory planning algorithm. Using our tool, the user can capture shots that follow cine-

matic conventions without spending cognitive effort on setting up individual compositions,

or specifying how to move between compositions.

Our quadrotor camera must know where the subjects are with sufficient accuracy to

faithfully capture these canonical shots of people. To that end, we present a platform for

accurately localizing multiple objects. By using RTK GPS and IMU sensors, our platform

iv

provides centimeter-accurate tracking and decimeter-accurate quadrotor control in a large-

scale outdoor environment.

In combination, this work enables novices and experts alike to capture high-quality video

footage using quadrotors.

v

Acknowledgments

My graduate school career would not be possible without the love and support of my family

and my friends. My mother Lydia and my father Pierre instilled in me a love of science and

engineering from my birth during a thunderstorm. I would not be here without their tireless

and selfless investment into myself and my two incredible brothers, Dieter and Pierre-Henri.

To them, and to the broader Joubert, Oosthuizen, and Du Toit families, thank you!

What gumption and skill I brought to my thesis work was infinitely magnified by my

many advisors, peers, and students at Stanford and UC Berkeley. It’s been my great fortune

to work with you! It’s an unfortunate limitation of the written medium that I must order

people’s names. Any perceived value judgment from this ordering is false! As a staunch

egalitarian, I firmly hold that everyone’s contribution brought unique and indispensable

value to my work. That being said, special dispensation—and the honor of being named

first—is given to my advisor, Pat Hanrahan, who gave me the wonderful gift of exploring

so widely that I changed thesis topics three times.

My deepest thanks to my many mentors, advisors, colleagues, and co-authors: Mike

Roberts and Jane E who deserve much credit for the success of this work, Prof. Stu Card,

Prof. Maneesh Agrawala, Prof. Juan Alonso, Prof. Alex Aiken, Prof. Andrew Kalman,

Prof. James O’Brien, Prof. Alex Filippenko, Dr. Zach DeVito, Dr. Eric Schkufza, Dr.

Daniel Ritchie, Dr. Trent Lukaczyk, Dr. Dan Goldman, Dr. James Hegarty, Dr. Matthew

Cong, Dr. Floraine Berthouzoz, Sebastian Burke, The Stanford UAV Club, Neil McGowan,

Henry Chamberlain, Lona Antoniades, Annelie Starke.

Mentoring eight students over three summers was one of my most rewarding experiences

at Stanford. Thank you to my students Anh Troung, Harrison Wray, Victoria Flores, Elias

Wu, Noa Glaser, Katherine Phan, Stephanie Tang, and Jorge Lara-Garduno, for allowing

me to learn the intricate and difficult skill of being an advisor to your most capable and

wonderfully curious minds.

vi

Academic work that includes a robotics component is notoriously challenging. It de-

mands interacting with the messiness of reality outside the nicely-sandboxed virtual environ-

ments we prefer in computer science. It also demands extensive investment and expertise in

hardware and software engineering to support core research problems. Our work would not

have been possible without the active involvement of the following companies, foundations,

and professionals: Fergus Noble, Colin Beighley, Timothy Harris and the Swift Navigation

team, Dr. Andrew Tridgell, Randy MacKay, and the ArduPilot team, Dr. Brandon Basso,

Dr. Dave Merrill and the 3D Robotics team, Derek Chung and the Canary Drones team,

Andy Putch and the Freeskies team, and the Adobe Research group.

Thank you as well to the many professional and amateur cinematographers we inter-

viewed, and who participated in our user studies: George Krieger, Joseph Picard, Brian

Streem, Barry Blanchard, Jeff Foster, Russell Brown, Romeo Durscher, Blake Marvin.

In California, I found the proverbial pot of gold at the end of the rainbow in the multitude

of incredible people I’ve befriended and experiences I’ve partaken in. I’m deeply grateful

for all my friends who accompanied me on this journey of highest highs and lowest lows,

Gleb Denisov, Ashley Brown, Dr. Eric Schkufza, Derek Chung, Marcello Bastea-Forte,

Yizhuo Wang, Patrick Tierney, Trisha McNamara, Carrie Smith, Sher Chu, Jennifer Hsiaw,

Madeline Fok, Liz Wheatley, and EECS House, you are all incredible. Many of the ideas

in this thesis were born in the unlikeliest setting for a transformative gathering, the Black

Rock Desert. Thank you to everyone in the extended families of The Dusty Connection and

Shady Waffle, and the colorful citizens of Black Rock City, home of the Burning Man.

I’d like to single out those that provided me with professional mental health support.

What little sanity I can still lay claim to is undoubtedly your fine work – Stanford’s CAPS

Center, Dr. Mark Abrahamson and the Mindfulness Based Stress Reduction program, and

my therapist. Approximate one-third of Ph.D. students are at risk of developing psychiatric

disorders, such as depression, and one in two experience psychological distress [51]. At one

top-3 engineering school, 47 percent of Ph.D. students qualify as depressed, and 10 percent

of graduate students have contemplated suicide [10]. It’s concerning that, beyond my own

wellness and development challenges, it appears we’re provide inadequate support for the

development of not just highly intelligent but also mentally healthy individuals, even at our

top institutions. I’m heartened by the gradual incorporation of mindfulness, psychother-

apy, and sports psychology into graduate programs, and hope this trend expands rapidly!

If you’re currently in the trenches and suffering, I implore you to seek professional counsel.

vii

Lastly, I dedicate this thesis to someone who will sadly never have the chance to read

these words - my grandfather, Oupa Nellis Oosthuizen.

viii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

2 Background 4

2.1 The Origins of Quadrotor Aircraft . 5

2.2 Relevant Work on Quadrotor Planning and Control 8

2.3 Relevant Work on Cinematography and Camera Control 11

2.4 Examples of Current Robotic Cinematography Systems 13

3 Guiding Quadrotors with 3D Animation Primitives 15

3.1 Approach . 15

3.2 Designing A Shot Planning Interface . 18

3.2.1 Design Principles . 18

3.2.2 User Interface . 19

3.3 Generating Feasible Trajectories for Quadrotor Cameras 22

3.3.1 Technical Overview . 22

3.3.2 A Quadrotor Camera Model . 23

3.3.3 Synthesizing Virtual Camera Trajectories 25

3.3.4 Synthesizing State Space Trajectories and Control Trajectories . . . 28

3.3.5 Real-Time Control System and Hardware Platform 31

3.4 Evaluation and Discussion . 33

ix

4 Evaluating RTK GPS for Quadrotor Localization 39

4.1 Approach . 40

4.2 Methodology . 42

4.2.1 Hardware and Software Platform . 43

4.2.2 Data Collection and Analysis . 45

4.2.3 Testing Procedure . 46

4.3 Results . 47

4.3.1 Precision of Stationary Position Measurement 47

4.3.2 Accuracy of Loop Closure Measurement 48

4.3.3 Precision of Fixed Point Hovering 51

4.3.4 Accuracy of Autonomous Return and Landing 56

4.3.5 Performance: Time to First RTK Fix 56

4.4 Discussion . 57

4.5 Conclusion . 60

5 Guiding Quadrotors with Composition Principles 61

5.1 Approach . 61

5.2 Design Goals and Challenges . 63

5.3 Technical Overview . 65

5.4 Modeling Subjects and Cameras . 66

5.4.1 Subject Model . 67

5.4.2 Quadrotor Camera Model . 67

5.5 Generating Static Shots . 68

5.5.1 Defining Shots . 68

5.5.2 Types of Canonical Shots . 70

5.6 Transitioning Between Shots . 71

5.6.1 Generating Basis Paths . 72

5.6.2 Optimal Blending of Basis Paths . 73

5.6.3 Generating the Final Trajectory . 75

5.7 Tracking and Control Platform . 75

5.8 Results . 77

5.9 Discussion . 80

x

6 Conclusion 82

6.1 Impact . 83

6.2 Final Remarks . 84

A Quadrotor Camera Model Details 85

A.1 Deriving the Quadrotor Camera Manipulator Matrices 85

A.2 Proof that B is Always Full Column Rank 90

Bibliography 91

xi

List of Tables

4.1 Summary of tests performed to quantify RTK GPS accuracy. Non-flying

tests demonstrate the baseline performance of RTK GPS in comparison to

conventional GPS. Flying tests demonstrate the performance of quadrotor

flight when guided by RTK GPS. Acquisition tests demonstrate the Time To

First Fix performance of single-frequency RTK GPS. 43

4.2 Data streams collected during RTK GPS testing. First, we measure the time

from power-on until first RTK fix. We collect both raw and discretized RTK

GPS positions, since the flight controller performs a position discretization.

We then collect the 3D positions produced the quadrotor’s EKF. Lastly, we

collect the 3D positions produced by the u-blox GPS in latitude-Longitude,

and the onboard barometer for altitude. Position streams are recorded at 5

Hz. 46

4.3 Results demonstrating the precision of the components of a quadrotor’s local-

ization system when stationary. Raw Piksi exhibits two orders of magnitude

higher precision that a conventional u-blox GPS in the north-east reference

frame, and an order of magnitude higher precision than the barometer in

altitude. ArduCopter’s fixed-point math dilutes the precision by less than

2 mm, while ArduCopter’s EKF dilutes the precision by about 3 cm. Position

measurements reported over 5 trials of 5 minutes each, 1500 position samples

per trial, with the quadrotor stationary on the ground during each trial. . 47

xii

4.4 Longer-term precision results for a quadrotor’s localization subsystems when

measuring a stationary position. Over two 20-minute trials, raw Piksi con-

tinues to exhibit two orders of magnitude more north-east precision and

one order of magnitude more altitude precision than a conventional u-blox

barometer-aided GPS. Data is reported over two 20-minute trials, 6000 po-

sition samples per trial, with the quadrotor stationary on the ground during

each trial. 48

4.5 Results for localization sensor accuracy during a loop-closure test. The RTK

GPS outperforms the conventional GPS by two orders of magnitude in accu-

racy during a loop-closure test, demonstrating the sensor’s ability to detect

revisiting the same physical position after moving away. Both GPSes were

moved through an arbitrary pattern in a 10 m2 space for 1 minute. Accuracy

was measured over 5 trials. 51

4.6 Results for an end-to-end system test of quadrotor hover precision when using

RTK GPS. The quadrotor manages to hold position to within 35 cm of the

commanded horizontal position when using the Piksi GPS as a localization

sensor. In this test, the Piksi itself is used as ground truth. In comparison,

the u-blox GPS only manages to track the quadrotor to approximately 1 m

accuracy. Altitude position hold managed to hold within 80 cm of the com-

manded vertical position. Position data reported over five 5-minute trials

during which the quadrotor attempted to hover at a fixed position. 52

4.7 Results for a longer end-to-end system test of quadrotor hover precision when

using RTK GPS. During 20-minute-long hover tests, the quadrotor continues

to hold position within approximately 30 cm, suggesting that our 5-minute

tests demonstrated a reasonable steady state hover precision. Position data

reported over two flights, each taking an full battery charge (approximately

12 minutes). 53

4.8 Results demonstrating the accuracy of autonomously landing a quadrotor at

the takeoff position, using the Piksi RTK GPS as a localization sensor. We

manually flew the quadrotor through a series of aggressive maneuvers, then

commanded an autonomous landing. 56

xiii

4.9 Results measuring the time from Piksi GPS boot until acquisition of first

RTK fix. Single-frequency RTK GPS systems suffer from relatively long fix

times, a limitation that can be addressed by moving to multi-band receivers

with a corresponding increase in cost and complexity. 57

xiv

List of Figures

3.1 Our interactive tool for designing quadrotor camera shots, Horus. In Horus,

users specify camera pose keyframes in a virtual environment using a 3D

scene view (a) and a 2D map view (b). Horus synthesizes a camera trajectory

that obeys the physical equations of motion for quadrotors, and interpolates

between the user-specified keyframes. Users can preview the resulting shot in

the virtual environment, using the playback buttons and scrubber interface

to navigate through the shot (c). Users can also control the precise timing

of the shot by editing easing curves (d). Users can set the virtual camera’s

field of view to match their real-world camera (e). Horus provides the user

with visual feedback about the physical feasibility of the resulting trajectory,

notifying the user if their intended trajectory violates the physical limits of

their quadrotor hardware (f). Once the user is satisfied with their shot, they

presses the Start Capture button (g). 16

3.2 Horus commands a quadrotor camera to execute the user’s trajectory fully

autonomously, capturing real video footage that is faithful to the virtual pre-

view. We show frames from our real-world video output, with corresponding

frames from the virtual preview shown as small insets 17

xv

3.3 Overview of the major technical components of our system. We begin with

two user-specified inputs: (1) camera pose keyframes in a virtual environment

(e.g., Google Earth); and (2) a sequence of easing curve control points which

specify how the camera progress over time between keyframes. From these

inputs, we compute a smooth camera path and a smooth easing curve. We

optimize the smoothness of the camera path and easing curve in a way that

obeys the physical equations of motion for quadrotors. We re-parametrize

the camera path, according to the easing curve, to produce a camera tra-

jectory as a function of time. We synthesize the control signals required

for a quadrotor and gimbal to follow the camera trajectory. We plot these

control signals in our user interface, providing the user with visual feedback

about the physical feasibility of the resulting trajectory. The user can edit

the resulting trajectory by editing camera pose keyframes and easing curve

control points. Once the user is satisfied with the trajectory, we command

a quadrotor camera to execute the trajectory fully autonomously, capturing

real video footage. 20

3.4 Overview of our quadrotor camera model, shown in 2D for simplicity. Degrees

of freedom: We model the physical state of a quadrotor camera with the

following degrees of freedom: the position of the quadrotor in the world

frame, p; the orientation of the quadrotor in the world frame, θq; and the

orientation of the gimbal in the body frame of the quadrotor, θg. Note that

the orientation of the gimbal is defined relative to the orientation of the

quadrotor. Forces and torques: We maneuver the quadrotor by applying

thrust control at the propellers, uq. This generates a net thrust force ft,

and a net torque τq, at the quadrotor’s center of mass. The only other force

acting on the quadrotor is an external force fe, which models effects like

gravity, wind, and drag. We orient the camera by applying a torque control

at the gimbal, ug. Note that thrust is always aligned with the quadrotor’s

local up direction. 24

xvi

3.5 Block diagram of our real-time control system for executing camera trajecto-

ries. On a ground station (left), our trajectory follower (white) samples the

camera trajectory, transmitting the sampled position and velocity of look-

at and look-from points to the quadrotor. Our trajectory follower allows

the user to optionally adjust a time scaling factor, to execute the trajectory

faster or slower. On board the quadrotor (right), the higher-level look-from

and look-at position controllers interface with a lower-level attitude controller

(yellow) and motor controller (green), similar to those described by Kumar

and Michael [47]. 32

3.6 Camera shots created by the two experts (left) and two novices (right) in our

user study. The look-from and look-at trajectories for each shot are shown

in red and blue respectively. The shots created by our participants contain

a wide variety of camera motions. 33

3.7 Novices and experts successfully designed shots with challenging camera mo-

tions using Horus. The expert shot (top) is especially challenging to execute

manually, since it requires smoothly changing the camera orientation to look

down at Hoover Tower exactly as the quadrotor flies over it. The novice shot

(bottom) contains a similar camera motion. 35

3.8 Participants were able to modify infeasible shots into feasible shots using the

visual feedback we provide in Horus. After his 7th revision, Expert 1 found

that his shot was infeasible (left). He edited both the altitude and timing of

3 keyframes to create a feasible shot as his 8th revision (right). Horizontal

red lines indicate physical limits of our quadrotor hardware. 36

3.9 Position and velocity error of our quadrotor for the longest (left) and shortest

(right) shots. The position error is less than 3.01 m at all times, and the

velocity error is less than 0.80 m/s at all times. Note that the horizontal

scaling varies varies on the left and right subplots. 38

xvii

4.1 Our modified 3D Robotics Iris Quadrotor. A second platform on top of the

quadrotor body holds a RTK GPS antenna and a conventional GPS module.

This platform provides electromagnetic shielding between the sensitive GPS

antennas and the rest of the quadrotor, as well as a clear sky-view during

flight. An Intel Galileo companion computer is mounted on the underside of

the body. The companion computer serves as an independent datalogger. . 40

4.2 Our base station cart, from where we issue commands and monitor the sys-

tem. It contains a Piksi RTK GPS connected to a NovaTel pinwheel antenna,

a laptop computer, a telemetry radio for data communication, and a remote

control radio for joystick control inputs. 41

4.3 Each row visualizes the reported position of the quadrotor over 5 minutes for

a single test trial. The quadrotor itself was stationary on the ground. The

conventional u-blox GPS (orange) exhibits a wandering path over multiple

meters. In comparison, Piksi (blue) stays within 2 cm for 95% of samples.

We also plot the circle within which 95% of samples fall (green). Altitude

precision of Piksi does not exhibit the drift of the barometer-aided u-blox

GPS. 49

4.4 Each row visualizes the reported position of the quadrotor over 10-20 minutes

for a single test trial. The quadrotor itself was stationary on the ground. All

tests exhibit the same high-level qualities as the tests represented in Figure

4.3. The difference in altitude precision between Piksi and the barometer-

aided u-blox GPS is further apparent here, given the additional time the

barometer has to drift away from ground truth. 50

4.5 Each row visualizes a 5 minute flight during which the quadrotor attempted

to hover at a fixed position. Using the Piksi RTK GPS (blue), the control

system manages to keep the quadrotor within 35 cm of the setpoint 95% of

the time. We also see wind gusts periodically moving the quadrotor away

from the setpoint, such as in row 4. The position recorded by the conventional

u-blox GPS is presented only for comparison. 54

xviii

4.6 Each row visualizes the reported position of the quadrotor as it attempted

to hover at a fixed position for the full flight time of a single battery charge.

Comparing these graphs to the equivalent 5-minute over in Figure 4.5, we see

similar behavior, suggesting that our 5-minute tests represent a reasonable

steady-state behavior of our quadrotor under RTK GPS control. 55

4.7 Cumulative distribution function of the Time To First RTK Fix measure-

ments. 50% of trials fall within 5 minutes, 31 seconds, and 95% of trials fall

within 19 minutes, 58 seconds. 58

5.1 In this chapter we present “The Drone Cinematographer”, an end-to-end sys-

tem for autonomously capturing well-composed footage of two subjects with

a quadrotor in the outdoors. Here we show a set of static shots captured by

our system, covering a variety of perspectives and distances. We demonstrate

people using our system to film a range of activities – pictured here: taking

a selfie, playing catch, receiving a diploma, and performing a dance routine. 62

5.2 Major technical components of our real-time autonomous cinematography

system, the Drone Cinematographer. Our tracking subsystem estimates

poses of subjects and the quadrotor camera in the real world. Whenever

a new shot type is provided by a user (shown in red), our system generates a

camera pose that satisfies visual composition principles and physical place-

ment constraints. To move the camera from its current pose to this new

camera pose, a feasible, safe, and visually pleasing transition is planned. Fi-

nally, a sequence of quadrotor and gimbal commands control the quadrotor

camera autonomously. 65

5.3 Overview of our camera and subject model. Each subject has a position and

a gaze vector, ~P and ~G. We model our camera as a look-from point ~Lf , a

look-at point ~La, and a field of view α. We also introduce angles θ and φ to

describe angles between the direction that the camera is pointed and the line

of action, and d to indicate the distance between the look-at and look-from

points. 67

xix

5.4 This table shows the four main types of shots we implemented in our system.

The top row shows the spatial layout of each shot from a bird’s eye view.

The blue camera is the goal virtual camera position, and the black quadrotor

shows the same shot from a safe distance. The second row shows the intended

visual composition, applying the rule of thirds. In the third row we show the

same shot after applying our minimum distance constraint. We move the

camera to a safe distance by decreasing the field of view, while maintaining

the size of the subjects by cropping the frame. The gaze direction of the

primary subject is measured relative to the line of action. Finally, we list the

parameters that define each shot. In this illustration, the pitch angle φ = 0. 68

5.5 Here we show the terms we use to construct basis vector paths. We assume

we are given two subject positions ~PA, ~PB and an initial and final camera

position ~C0, ~C1. In blue, we show the terms that generate a basis path for

Subject A. We extract an initial and final vantage vector ~vA(0), ~vA(1), and

an initial and final distance dA(0), dA(1). We linearly interpolate from dA(0)

to dA(1), and spherical linearly interpolate from ~vA(0) to ~vA(1). Scaling the

interpolated vantage vector by the interpolated distance as we interpolate

produces a basis path. In orange, we show the same quantities relative to

Subject B. 71

5.6 Blending between quadrotor camera trajectories. (a) A top-down view of our

basis camera paths, generated using spherical interpolation around Subject

A (blue path) and Subject B (orange path), respectively. The green circles

represent the safety sphere of each subject. Note that the orange basis path

violates the minimum distance constraint (green circle) around Subject A.

(c) We find a final camera path by blending these two basis paths, enforcing

the constraint that the final path is outside both unsafe regions. 72

5.7 Overview of the major physical components of our hardware platform. A

subject (a) wears a position and orientation tracker on a helmet. GPS cor-

rections are provided from a base station (b). The quadrotor (c) is equipped

with an orientable camera and similar tracking hardware. 76

xx

5.8 Here we show a sequence of static shots captured by our system during a

single shoot of two subjects playing catch. Top left to bottom right: apex

from above, external of subject in red, external from above of subject in red,

internal of subject in gray, external of subject in gray, apex. Notice the line

of action is maintained throughout these shots: The person in red is always

on the left, and the person in gray remains on the right. 77

5.9 Here we show a sequence of frames from a transition captured by our system

while filming a choreographed dance routine. This transition goes from an

external shot of the right character to an external shot of the left character. 77

5.10 A failure case, where the suggested crop does not match the target framing.

α = 14.9 while αmax = 50. 78

5.11 World space and screen space error incurred when using conventional GPS to

track subjects and plan shots. We track subjects through an 8 minute session

using both RTK and conventional GPS. We use RTK GPS as ground truth,

and conventional GPS to plan shots. Conventional GPS produced world

space error of several meters, potentially violating our safety constraint. We

automatically planned a virtual camera shot every 4 seconds, and report the

resulting screen space error. Using conventional GPS incurs unacceptable

screen space error, potentially placing the subject halfway across the frame or

more. Furthermore, world space error is significant enough that the quadrotor

can easily violate the safety sphere around our subjects. 79

xxi

Chapter 1

Introduction

Film as an art form is driven by technological innovation. The earliest films were made

with a static camera from a fixed point of view, like a play. Over time it was discovered

that splicing shots from different cameras together could fuse them perceptually and con-

textually, achieving new narrative and artistic effects. These techniques were on the one

hand dependent on artistic insight—how an effect would contribute to a film’s narrative,

mood, and purpose—but also dependent on technological innovation which made new ef-

fects possible, or changed the skill and cost required by the filmmaking process. This thesis

is about how a rapidly emerging technology, quadrotor cameras, can continue this process

and enable significant further advances in cinematography.

Quadrotor cameras are digital cameras mounted on self-stabilized unmanned multirotor

aircraft. In the thesis, we develop and implement approaches to three major problems

blocking the development of this technology: (1) how to control quadrotor cameras for

cinematography (2) how to accurately track objects in the real world and (3) how to encode

cinematic knowledge into a quadrotor camera control system. The key result of this work is

that by reifying concepts from virtual and traditional filmmaking into tools, we can enable

users to express quadrotor camera shots at a high level, automate the role of the pilot, and

enable a broader range of users to capture high-quality video footage. In short, we allow

the user to drive the film, and the film to drive the quadrotor.

The traditional approach to interacting with quadrotor cameras is ill-suited for cine-

matography. Providing a set of joysticks and buttons—although suitable for maneuvering

a quadrotor in real time—requires much skill and dexterity. The user must know how to fly

a quadrotor and manipulate the attached camera. They must also know how to compose

1

CHAPTER 1. INTRODUCTION 2

film in a visually pleasing way. They must constantly translate from their desired visual

composition to the quadrotor camera’s controls. Since the quadrotor can only move in

certain ways, they must also adapt their cinematic vision to its physical limitations. The

combination of these challenges means that only a small set of highly-skilled artists can

take advantage of the full capabilities of quadrotor cameras.

Say the user wants to film a tower, keeping it in the center of the frame as the camera

circles clockwise around it. The user will have to execute a carefully coordinated series of

joystick movements to fly the quadrotor to the left while rotating it counterclockwise. The

user’s movements must be precisely coordinated. If the user rotates too fast, the user won’t

be able to fly fast enough to keep the tower in view. If the user over or undercompensates,

the tower will move away from the center of the frame and ruin the visual composition. If

this isn’t challenging enough, the user must also avoid crashing the quadrotor into objects in

the environment, potentially destroying equipment or causing injury. Even expert quadrotor

cinematographers would struggle to capture this visually simple shot.

In the first part of this thesis, we demonstrate an alternative approach to interacting

with quadrotor cameras, rooted in well-established camera planning principles from 3D

animation. We show how to use keyframes—a picture that encodes the visual composition

of a shot at a representative point during that shot—along with a small set of additional

concepts, to inform how to build a tool for designing and automatically executing quadrotor-

based cinematography. Our tool enables users to (1) compose shots visually before flying,

(2) preview the resulting shots in a virtual environment, (3) precisely control the timing of

shots using easing curves and (4) capture the resulting shots in the real world with a single

button click using commercially available quadrotors. To build our tool, we show how we

can derive the real-time control inputs of a physical quadrotor camera model from a series

of camera keyframes and easing curves. The result is that cinematographers can capture

shots with a quadrotor camera without having to pilot the quadrotor aircraft.

For a quadrotor to capture accurate shots, it must know where it is in relation to

its subjects and environment. In the second part of this thesis, we investigate applying

a newly-available centimeter-accurate positioning approach to quadrotor localization. We

quantitatively demonstrate centimeter-accurate tracking and decimeter-accurate control in

large-scale real-world outdoor conditions. We use this approach, called RTK GPS, to build

a testbed for localizing arbitrary objects, including people.

CHAPTER 1. INTRODUCTION 3

Unsurprisingly, some visual compositions of shots are more favored than others. In

the last part of this thesis, we present a tool that guides quadrotor cameras using visual

composition principles. Specifically, we focus on autonomously capturing video of one or

two people. Rather than having the user compose a shot manually, our tool provides a

small set of canonical shots to the user, such as the apex, external or internal shot. We

show how to capture these shots of people autonomously, using a quadrotor camera and our

accurate tracking testbed. We find that, unlike standard GPS-based systems, our tracking

and control testbed is sufficiently accurate for capturing well-composed shots of people.

Furthermore, we show how to move the quadrotor between these canonical shots in a way

that’s both visually pleasing and keeps the quadrotor from crashing into subjects. The

result is that users can use elements from the language of film to control quadrotor cameras

capturing video of people, without having to spend cognitive effort on setting up individual

compositions or specifying how to move between these compositions.

Over the past few years, we’ve seen the rise of flying cameras. In combination, this

work takes a step towards building what could be considered a self-flying camera. Just as

a self-driving car has the potential to take its user to a destination without requiring they

know how to drive, a self-flying camera gives the user the ability to capture footage without

requiring they to know how to fly.

Chapter 2

Background

Quadrotors are vertical takeoff and landing aircraft, where lift is generated using four ro-

tating airfoils. This particular aircraft design is experiencing massive popularity growth in

the form of micro unmanned aerial vehicles. These MAVs, weighing anywhere from 50 g to

50 lb, can stably hover in place, execute aggressive flight paths, fly autonomously, and carry

various sensors aloft. They’ve been the subject of interdisciplinary research and engineering

efforts, enabled by recent advances in batteries, electric motors, sensors, and microproces-

sors. These efforts have been successful enough for quadrotor MAVs to appear as consumer

and industrial devices, everything from toys to professional tools.

One area where quadrotor aircraft is being adopted, is cinematography. Quadrotors

outfitted with orientable cameras are being used to film everything from Hollywood block-

busters to campy home videos. As a result, quadrotors are changing to suit the needs of

cinematographers. For example, various quadrotors now support a dual-controller config-

uration with a high definition video downlink. One operator flies the aircraft. A second

operator watches the real-time video feed and reorients the camera to compose a shot.

This way, cinematographers can experiment and make decisions about the visual footage

being captured, in real-time. More broadly, we believe that cinematic knowledge is ready

to influence quadrotor camera interaction design directly.

In this chapter, we survey work done on quadrotor MAVs and work done on tools for

virtual and real-world cinematography. We will examine how roboticists control and interact

with quadrotors. We will examine how cinematographers and computer graphicists control

and interact with cameras. We will set the stage to combine these fields into a set of tools

for autonomous cinematography—the topic of this thesis.

4

CHAPTER 2. BACKGROUND 5

2.1 The Origins of Quadrotor Aircraft

To understand the current state of quadrotors, how they are well-matched for cinematog-

raphy, and how they fall short, it’s useful to understand the historical development of

quadrotors MAVs. Today’s quadrotors can be traced back to early multirotor prototypes

introduced in the 1930s. In fact, the first rotorcraft to achieve hover featured multiple

lifting rotors. These early prototypes demonstrated the main aerodynamic properties of a

lifting rotor: (1) the aircraft can be moved vertically by varying the amount of lift pro-

duced by the main rotor, (2) the aircraft can be steered by changing the orientation of the

rotor, thus changing the direction of lift (3) the rotor produce a reactionary torque on the

airframe which must somehow be balanced, and (4) a rotor moving sideways through an

airflow experiences “dissymmetry of lift”, where the forward blade produces more lift than

the retracting blade. This dissymmetry will roll the aircraft, and must be counteracted.

With the development of manned helicopters, the aerodynamics of rotors was extensively

studied throughout the 1900s, and detailed models of rotor aerodynamics are available in

the literature [73, 50]. Multiple multirotor aircraft designs were investigated, including

quadrotor configurations such as the Curtis X19-A from 1963 and the Bell X-22A from 1966.

These aircraft are all built on the basic quadrotor configuration: four lifting rotors, arranged

as two pairs spinning in opposite directions. This arrangement means the reactionary torque

and dissymmetry of lift produced by one rotor is naturally balanced by its opposite pair.

The craft can be accelerated in a direction by changing the total speed of all rotors. The

craft can change the direction in which it is accelerated by rotating around its center of

mass, which is accomplished by having one rotor speed up and the opposite rotor slow down.

Since its rotors move in a plane fixed relative to the quadrotor body, this method of moving

through an environment creates the effect of a quadrotor “leaning” into the direction of

acceleration. For more details, we refer the reader to the accessible and comprehensive

overview of quadrotor dynamics presented by Mahony et al. [58]

Unfortunately, early quadrotors suffered from two major flaws. First, they were mechan-

ically complex with multiple combustion engines and gearboxes. This made them expensive

to manufacture and difficult to maintain. Secondly, pilots found them extremely challenging

to control, and pilot augmentation systems were not yet advance enough to stabilize these

aircraft effectively. None of the efforts to build a manned quadrotor aircraft made it into

production, and the development of vertical takeoff and landing aircraft focused on designs

CHAPTER 2. BACKGROUND 6

with a single lifting rotor a small tail rotor. This design allows a single main rotor to spin at

a constant speed - easy to drive using internal combustion engines. A complex mechanical

system that allows cyclic and collective pitch adjustment of the rotor blade provides control

to a pilot. For the time being, quadrotor development remained a theoretical possibility.

Certainly, there were no commercially available micro quadrotors throughout most of the

20th century.

Arrival of Commercial MAV Quadrotors The development of quadrotor MAVs took

place simultaneously in the hobby and research worlds. Remote control toy companies were

introducing cheap and small components needed for miniature quadrotors: LiPo battery

systems, high speed microprocessors, electronic speed controllers, and brushless motors.

The hobby “maker-movement”, building on the explosion of cheap microcontrollers and

sensors brought about by the proliferation of smartphones, was making microcontroller

development and robotics accessible and affordable. Simultaneously, the research world

was investigating new modeling, control, and planning methods for aerial robots.

In 1989, the Japanese electronics manufacturer Keyence introduced a set of miniature

mechanical gyroscopes, used to electrically measure the rate of rotation around an axis.

Using two of these sensors as the basis for an analog control system, Keyence productized

the first miniature quadrotor. Called the “Gyro Saucer”, this remote controlled miniature

quadrotor could hover for about a minute using Nickel Cadmium rechargeable batteries

and brushed electric motors. This design was severely limited by low capacity batteries and

imprecise gyroscopes and never took off commercially.

In 1999, Mike Dammar of Area Fifty-One Technologies introduced the first practical,

commercially available quadrotor1. Dubbed the Roswell Flyer, it was sold as a build-it-

yourself kit marketed to remote control toy enthusiasts. It relied on ceramic piezo-electric

gyroscopes to measure its rotation rate, and a digital control system to auto-level the

quadrotor. It furthermore used lithium-based rechargeable batteries and brushless motors

to achieve a flight time of approximately 15 minutes [86]. Next, Area Fifty-One Technologies

partnered with DraganFly, and produced the DraganFlyer series of quadrotors. In 2002,

Dragan released the DraganFlyIII, which included an optional camera and video transmis-

sion system. For the first time, hobbyists could use micro quadrotors to capture aerial

imagery. Several early quadrotor research projects were built on the DraganFlyer [37, 19].

1Personal Communication with Mike Dammar, February 2017

CHAPTER 2. BACKGROUND 7

Since the introduction of the DraganFlyer series, quadrotor MAVs have massively prolif-

erated. In 2006, DJI was founded, selling flight controllers for model helicopters and quadro-

tors. In 2007, the ArduPilot project was founded, building an open-source flight controller

using the popular Arduino microcontroller platform. In 2009, ETH Zurich founded the PX4

project, providing a research-grade open-source autopilot. In the same year, 3D Robotics

was founded, providing open-source and open-hardware quadrotors using the ArduPilot and

PX4 projects. The fully-open nature of their quadrotors created an attractive platform for

enthusiasts and researchers. In fact, the work presented in this thesis is built upon this

platform.

At the same time, small, rugged, high-quality cameras were proliferating, sold by com-

panies such as GoPro and Mobius. By mounting these cameras on quadrotor MAVs, pho-

tographers discovered a new type of low-altitude aerial photography, creating unique angles

from new vantage points. To overcome the orientation changes of a quadrotor as it follows

a trajectory, cameras are mounted on actively controlled gimbals. These gimbals actively

reorient the camera by exploiting the same brushless motor control and MEMS sensor tech-

nologies that enable quadrotors, creating smooth and stable video footage regardless of the

aggressive behavior of the quadrotor.

These technological advances paved the way for the proliferation of commercial quadro-

tor cameras. By 2015, DJI was selling upwards of half a million quadrotors with attached

cameras a year, generating $1 billion in revenue, and valued at roughly $10 billion [72]. By

2016, the FAA required registration of all quadrotors MAVs. 300,000 MAVs were registered

in the first 30 days of the program [1]. The camera-equipped quadrotor was becoming a

mainstream tool for photographers and cinematographers.

When we look at the user interface provided by these quadrotor cameras, we notice

an interesting phenomenon. These quadrotors still rely on the standard remote-control

interface, appropriated from hobbyist radio control airplanes. This comes as no surprise,

given the development history of quadrotors. This interface presents two 2-axis joysticks to

the operator. These joysticks send real-time commands to the quadrotor and camera. The

exact behavior of these joysticks is usually configurable. Commonly, these sticks command

at least three different modes. In “rate mode”, joysticks command the rate of rotation

around each axis of the quadrotor, and the onboard control system adjusts each propeller’s

thrust accordingly. This mode requires only an onboard rotation rate sensor such as a

gyroscope, and requires extreme user dexterity. In “orientation mode”, joysticks command

CHAPTER 2. BACKGROUND 8

the absolute orientation of the craft relative to the horizon, and the onboard control system

rotates the craft into the desired orientation. This requires an absolute orientation reference,

normally supplied by an onboard accelerometer. In “position mode”, joysticks command a

change in position, and the onboard control system moves the quadrotor accordingly. This

mode requires an absolute position reference, normally supplied by an onboard GPS.

This thesis claims that we can invent new tools to control quadrotor cameras by bringing

together camera control concepts from the computer graphics community with autonomous

control strategies and higher quality sensors from the robotics community.

2.2 Relevant Work on Quadrotor Planning and Control

Designing Trajectories for Quadrotors A trajectory is a function that describes a

path through space over time. A trajectory is only useful if a physical quadrotor can

execute this path, that is, there exists a sequence of motor speeds that, when executed,

will move the quadrotor along this trajectory. For this to be the case, the trajectory must

satisfy the physical equations of motion of the quadrotor. Trajectory planning algorithms

solve the problem of finding a trajectory for a quadrotor given some high-level inputs. For a

detailed discussion on the theory of trajectory planning, we refer the reader to the excellent

course reader by Tedrake [81], and books by LaValle [49] and Karaman and Frazolli [42].

Mellinger and Kumar [63] and Richter et al. [74] introduced trajectory planning meth-

ods for quadrotors that finds a trajectory given a small set of waypoints. These methods

make the observation that there exists a reduced state space in which all C4 trajectories are

guaranteed to obey the physical equations of motion for quadrotors. Based on this observa-

tion, they synthesize trajectories by optimizing piecewise polynomials in the reduced state

space. These approaches provide a theoretically sound foundation for higher level synthe-

sis algorithms. Our methods for synthesizing quadrotor camera trajectories, presented in

Section 3.3, extends this same observation to quadrotor cameras and adapts it to a camera

planning space.

Current Quadrotor Trajectory Planning Tools Using these algorithms, the robotics

and aeronautics communities have developed trajectory planning tools for autonomous

quadrotors. The DJI Ground Station [26] and the APM Mission Planner [8] trajectory

planning tools allow users to design quadrotor camera trajectories by placing waypoints

CHAPTER 2. BACKGROUND 9

on a 2D map. The QGroundControl system [62] allows users to design quadrotor camera

trajectories by placing waypoints in a 3D scene. However, these tools do not allow users

to edit the visual composition of shots, do not provide a virtual preview, do not provide

precise timing control, and do not provide feasibility feedback.

Designing Trajectories around Obstacles Obstacles appear as non-convex constraints

in the otherwise convex reduced state space. This challenge is addressed in several different

ways. Richter et al. used a sampling-based approach to first find a rough approximate path

through an environment, then used an optimization approach to find a piecewise continuous

polynomial path that satisfy continuity constraints [74]. Deits et al. preprocessed the free

space into overlapping convex areas, then used a mixed-integer optimization approach to

jointly find both the appropriate subset of free convex spaces and a smooth traversing

trajectory [23]. Gebhardt et al. modeled obstacles as non-convex, spherical regions and

relied on a sequential quadratic program to find a trajectory through the resulting non-

convex space [32].

The previous algorithms were limited to offline usage, since runtimes are on the order

of several seconds to minutes. Most recently, Allen and Pavone introduced state-of-the-

art method that is fast enough to run in real time [7]. They relied on a combination of

preprocessing, fast sample-based search, and trajectory smoothing.

Our method for finding trajectories around people, presented in Section 5.6, similarly

plans smooth trajectories directly in a non-convex space by relying on a non-convex op-

timizer. Our approach takes advantage of our specific use case—filming two people—by

planning trajectories in a unique reduced space, allowing us to find paths that also consider

visual aesthetics along the trajectory, and produce a solution in under a second.

Accurate Position Sensing Autonomous control of quadrotors rely on locating the

quadrotor in its environment. Commercial quadrotors rely on GPS to provide a position

estimate, accurate to a few meters. The research community often localizes quadrotors to

millimeter precision using visual tracking systems built for motion capture [64, 57]. Un-

fortunately, these motion capture systems rely on cameras in the environment, limiting

their use case to relatively small areas outfitted in advance with an expensive array of

sensors. Although several groups are investigating onboard visual and LIDAR-based local-

ization [61, 11], so far the authors are unaware of any non-GPS-based absolute position

CHAPTER 2. BACKGROUND 10

system for quadrotors that works reliably in arbitrarily large outdoor environments. Our

work investigates using a new generation of centimeter-accurate low-cost RTK GPS sensors

for quadrotor localization outdoors.

Tracking Objects using Quadrotors Computer vision algorithms and feedback control

policies have been developed to track moving target objects using quadrotors equipped with

cameras [83, 66, 53, 21]. However, existing approaches react to moving target objects by

optimizing the position of the quadrotor. In contrast, we globally optimize the trajectory

of the quadrotor.

An alternative approach is placing sensors on subjects, relieving the quadrotor from

maintaining a visual line of sight to all subjects. Inspired by work using centimeter-accurate

RTK GPS [82] to study human gait, we use RTK GPS combined with Inertial Measure-

ment Unit (IMU) sensors to track subjects and demonstrate its efficacy for automating

cinematography.

Physically Safer Quadrotors Several companies are developing safer quadrotor hard-

ware, such as the Parrot AR, Hover Camera and Flyability Gimball. These quadrotors

reduce the potential harm of a collision by enclosing the propellers inside a safety mesh

or shell. Recently, the first consumer quadrotors with active obstacle avoidance became

available. The DJI Phantom 4 and Yuneec H both attempts to detect an obstacle and take

evasive action. However, these systems do not attempt to produce visually pleasing cine-

matography while avoiding obstacles. We see these approaches as important safety fallbacks

for handling unexpected or unavoidable collisions, complementary to our subject-aware tra-

jectory planner.

Quadrotors Equipped with Robotic Arms Quadrotors are being equipped with more

than just cameras. There is a growing literature describing physical models for quadrotors

equipped with robotic arms [56, 45, 87, 78]. This literature is closely related to our work, in

the sense that the camera in our quadrotor camera model can be thought of as a very short,

very lightweight, single link, fully actuated robotic arm. Whereas existing approaches focus

on designing feedback control policies to follow given trajectories, our approach focuses on

synthesizing these trajectories subject to high-level user constraints.

CHAPTER 2. BACKGROUND 11

Quadrotors Applied to Other Computer Graphics Problems Quadrotors have

very recently been applied to computer graphics problems beyond cinematography. Srikanth

et al. introduced a feedback control policy for maneuvering a quadrotor with a non-

orientable light attached to it [79]. Their control policy positions the quadrotor relative to

a target object, so as to achieve a particular lighting effect when viewed from a stationary

camera positioned elsewhere in the scene. As in our work, Srikanth et al. computationally

control quadrotors to achieve an aesthetic visual objective. However, they optimize the

position of a light in a scene, whereas we optimize the trajectory of a camera through a

scene.

2.3 Relevant Work on Cinematography and Camera Control

Principles of Cinematography Filmmakers have extensively studied visual composi-

tion of cinematic shots [59, 43, 14]. These artistic professionals observed that some compo-

sitions are more visually pleasing than others. Starting from this observation, filmmakers

have deduced a language of film, including canonical shots well-suited to a wide range of

scenarios. These efforts culminated in the seminal work of Arijon, “The Grammar of Film

Language”, which systematically describes the various factors involved in composing a cin-

ematic shot depending on scenario [9]. This body of work has proved to be an invaluable

guide for the technical disciplines in their attempts to design tools for cinematographers.

Designing Trajectories for Virtual Cameras using 3D Animation Techniques

Designing trajectories for virtual cameras is a classic problem in 3D animation, compre-

hensively discussed in the excellent survey paper by Christie et al. [20]. A wide variety of

methods exist that take a series of input keyframes and easing curves and produce a camera

trajectory. These methods enable a powerful interface for camera path planning, with users

sparsely specifying high-level visual keyframes and receiving a continuous camera trajec-

tory in return. We build on these principles in designing our tool for guiding quadrotor

cameras using 3D animation principles, presented in Chapter 3. Especially relevant to this

thesis is the work by Oskam et al. [70] and Hsu et al. [38]. Both these methods generate

camera trajectories by solving a discrete optimization problem on a graph representation

of a scene. Both of these methods refine the resulting discrete trajectory, either by using

an iterative smoothing procedure [70], or by solving a continuous optimization problem [38].

CHAPTER 2. BACKGROUND 12

These existing methods for synthesizing virtual camera trajectories guarantee C1 or C2

continuity. However, we demonstrate in Section 3.3.4 that camera trajectories must be C4

continuous in order to obey the physical equations of motion for quadrotors. With this

requirement in mind, all our tools synthesizes C4 camera trajectories. We achieve this level

of smoothness using both discrete and continuous optimization techniques.

Autonomous Cinematography in Virtual Environments using Composition Prin-

ciples Computer graphicists have also invented methods to automatically find visually

pleasing compositions and trajectories. The computer gaming industry have developed a

deep knowledge of fully-automatic real time camera control [35]. Furthermore, interests in

virtual worlds have spurned automatic real-time camera control algorithms [20]. A common

approach is to find camera poses based on the aforementioned principles of cinematogra-

phy [36, 22, 52].

Especially relevant to our work is the seminal paper by He et al. [36]. This paper present

a set of heuristics to pose virtual cameras based on visual composition principles, and use

these heuristics to design “The Virtual Cinematographer”. In their system, visually pleasing

camera poses are encoded as a set of camera modules. Each camera module encodes a shot

type from cinematography literature, and generates a camera pose that follows composition

heuristics. In Chapter 5, we extend their method to quadrotors. In doing so, we satisfy the

physical constraints imposed by quadrotors, track objects in the real world, and consider

safety of subjects, all while maintaining the same high-level visual composition principles.

Finding Transitioning Trajectories between Camera Poses Our tool for guiding

quadrotor cameras using visual composition principles, presented in Chapter 5, has to find

trajectories that automatically transition our quadrotor camera between canonical camera

poses. Fortunately, interpolating between multiple camera poses in a visually pleasing

manner is a well-studied subproblem of autonomous cinematography. Recently, Lino and

Christie [54] demonstrated a fast analytic method for interpolating between viewpoints of

subjects in a way that produces visually pleasing results. Their main insight was to define

a visual interpolation space relative to each subject, and analytically compute a resulting

camera path. They show how to solve for a camera position given two screen-space positions

and a distance to the closest subject, also known as the Blinn spacecraft problem [13]. Lino

CHAPTER 2. BACKGROUND 13

and Christie’s approach has been used to generate smooth trajectories using an iterative

approximation approach [29], and as a target for the Prose Storyboard Language [31]. Their

approach has also been extended to force-based camera models with soft constraints [30].

We build on Lino and Christie’s visual interpolation space to design a new method that also

produces visually pleasing results, while we specifically respect the safety of both subjects

and the requirements of quadrotor hardware.

2.4 Examples of Current Robotic Cinematography Systems

New Quadrotor Flight Modes for Cinematographers The quadrotor community is

actively inventing new flight modes that raise the level of abstraction presented to operators.

Rather than having joysticks simply change the position of the quadrotor, the 3D Robotics

Solo [4] and DJI Go [25] systems change the behavior of the operator’s joysticks in such

a way as to aid cinematography. These systems allow users to control the orientation of

the camera and speed of the quadrotor as it flies between pre-defined waypoints [4], or

in a circular orbit around a point of interest [25]. Whereas these systems can be used to

modify shots as they are being executed, our systems can also be used to precisely design

shots before they are executed. Moreover, the 3D Robotics Solo and DJI Go systems have

autonomous flight modes that will track a moving target object, whereas our systems can

be used to design shots where there is no particular target object. Fundamentally, these

flight modes still rely on an operator to fly the vehicle and make continuous changes to

capture a shot, while our tools alleviate the user from having to pilot a quadrotor.

Autonomous “Follow-me” Quadrotors There is active interest in designing quadrotor

camera control systems that can fully autonomously capture video of subjects. Naseer et al.

demonstrated a quadrotor that follows a person using RGB-D depth tracking [66]. The 3DR

Solo, DJI Phantom, Yuneec Typhoon, AirDog, and Ghost Drone all feature a “follow-me”

mode that tracks subjects. These follow-me approaches have much in common with pilot

aids such as position-hold mode. They only attempt to keep the subject visible, and still

rely on the operator to compose the shot or smoothly move between shots. In contrast, our

approach uses high-level cinematography principles to automatically find visually pleasing

poses and present interfaces to plan cinematography before flight.

CHAPTER 2. BACKGROUND 14

Tools for Cameras Attached to Robotic Arms Tools for designing camera trajecto-

ries that support cameras mounted on robotic arms have been developed. Most relevant to

this thesis is the work by Bot & Dolly. They incorporated trajectory planning for robot arms

into the popular Maya 3D animation package, leveraging the cinematography-oriented fea-

tures of a 3D animation tool and the physical abilities of industrial robot arms2. Although

we draw inspiration from their work, these tools are not directly applicable to quadrotor

cameras. We enable cinematography-oriented features in a tool for quadrotor cameras, and

thus more effectively assist quadrotor cinematographers.

Autonomous Cinematography using Wheeled and Stationary Robotic Cameras

More broadly, guiding robotic cameras using visual composition principles has been investi-

gated in the robotics literature. However, this work mostly focuses on wheeled or stationary

robots [17, 6, 44, 28]. In contrast, our system explicitly considers the dynamics of quadro-

tors when planning shots. Similar to our technique, some of this work crops the resulting

footage to improve visual composition when the robot cannot place itself in the desired

pose [18].

2Bot & Dolly is now defunct, and the specifications for the IRIS camera control system are no longer
publicly available. The details of their implementation comes from personal correspondence with Joe Picard,
the Director of Photography of Bot & Dolly

Chapter 3

Guiding Quadrotors with 3D

Animation Primitives

This chapter introduces an interactive tool for designing quadrotor camera shots, designed

around well-established 3D animation primitives. We call our tool “Horus”. Horus assists

users in designing shots before capturing with a quadrotor, and assumes full control of the

quadrotor during capture. In doing so, our tool enables novices and experts to capture

high-quality aerial footage without requiring any piloting skill.

The contents of this chapter was adapted from a 2015 SIGGRAPH Asia conference

paper co-authored by Niels Joubert, Mike Roberts, Anh Troung, Floraine Berthouzoz and

Pat Hanrahan. All uses of “we”, “our”, and “us” in this chapter refer to all listed authors.

3.1 Approach

Typically, users control quadrotors with hand-held joysticks, which requires significant phys-

ical dexterity and practice. Flying a quadrotor with a camera mounted to it is even more

challenging because both the quadrotor and camera must be simultaneously controlled.

Quadrotors can also be flown in autonomous mode, where users design flight paths by spec-

ifying waypoints in an offline tool. However, existing flight planning tools are not designed

for cinematography: they do not allow users to edit the visual composition of their shot;

they do not allow users to preview what their shot will look like; they do not give users

precise control over the timing of their shot; and they allow users to create shots that do

not respect the physical limits of their quadrotor hardware, which can cause the quadrotor

15

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 16

a b

c
d

e

f

g

Figure 3.1: Our interactive tool for designing quadrotor camera shots, Horus. In Horus,
users specify camera pose keyframes in a virtual environment using a 3D scene view (a)
and a 2D map view (b). Horus synthesizes a camera trajectory that obeys the physical
equations of motion for quadrotors, and interpolates between the user-specified keyframes.
Users can preview the resulting shot in the virtual environment, using the playback buttons
and scrubber interface to navigate through the shot (c). Users can also control the precise
timing of the shot by editing easing curves (d). Users can set the virtual camera’s field of
view to match their real-world camera (e). Horus provides the user with visual feedback
about the physical feasibility of the resulting trajectory, notifying the user if their intended
trajectory violates the physical limits of their quadrotor hardware (f). Once the user is
satisfied with their shot, they presses the Start Capture button (g).

to deviate significantly from the intended trajectory, or even crash.

To inform the design of Horus, we conducted formative interviews with professional

quadrotor photographers and cinematographers, and we accompanied them on professional

quadrotor shoots. From this study, we extracted a set of design principles for building

useful quadrotor camera shot planning tools. Our interactive interface (see Figure 3.1)

instantiates these principles by (1) allowing users to specify shots visually in a realistic 3D

Google Earth environment; (2) providing a virtual preview of the entire shot; (3) providing

users with precise control over the timing of the shot; and (4) notifying users if their intended

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 17

Figure 3.2: Horus commands a quadrotor camera to execute the user’s trajectory fully
autonomously, capturing real video footage that is faithful to the virtual preview. We
show frames from our real-world video output, with corresponding frames from the virtual
preview shown as small insets

shot violates the physical limits of their quadrotor hardware. Finally, Horus commands a

quadrotor camera to execute the user’s trajectory fully autonomously, capturing real video

footage that is faithful to the virtual preview (see Figure 3.2) Together, these features

enable cinematographers to quickly design compelling and challenging shots, focusing on

their artistic intent rather than the specific controls of the aircraft.

To build Horus, we rely on a physical quadrotor camera model, in which a rigid body

quadrotor is attached to a camera mounted on a gimbal. We analyze the dynamics of

our model and show that camera trajectories must be C4 continuous to obey the physical

equations of motion for quadrotors. With this requirement in mind, we derive an algorithm

for synthesizing C4 continuous camera trajectories from user-specified keyframes and easing

curves. This algorithm enables users to design shots visually and gives users precise control

over the timing of their shot. We then derive an algorithm to compute the control signals

required for a quadrotor and gimbal to follow any C4 continuous camera trajectory. This

algorithm enables Horus to provide the user with visually accurate shot previews, and visual

feedback about the physical feasibility of camera trajectories.

We use our tool Horus to generate a variety of quadrotor camera shots. We evaluate

Horus in a user study with four cinematographers. Two of our users are expert quadrotor

pilots, and the other two had almost no quadrotor experience. All of our users appreciated

how easy it was to design compelling and challenging shots using Horus. Novices stated

that Horus would empower them to shoot high-quality aerial footage, a skill otherwise

inaccessible to them, and experts stated that Horus would improve and extend their existing

workflow.

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 18

3.2 Designing A Shot Planning Interface

3.2.1 Design Principles

In order to design more effective tools for quadrotor camera control, we began by analyzing

manuals on cinematography [59, 9, 43], as well as conducting formative interviews. We

interviewed six professional photographers and videographers. Their level of expertise with

quadrotor cameras ranged from novice to expert. We accompanied two of the quadrotor

experts to professional quadrotor shoots. All participants primarily fly quadrotors manually,

but have used existing trajectory planning tools. Each interview lasted approximately an

hour. We asked them 30–40 questions pertaining to their setup, their preparations before

capture, their workflow during capture, their post-processing steps, and their wish list for

quadrotor cinematography. From this study, we extracted a set of design principles for

building effective quadrotor camera planning tools.

Allow Users to Design Shots Visually All participants were primarily concerned with

the visual contents of a shot. For this reason, when flying the quadrotor manually, they

relied heavily on a real-time video feed from the camera to decide whether the current shot

captures their artistic intent. Therefore, an effective tool for planning quadrotor camera

trajectories should allow users to design shots visually.

Produce Visually Accurate Shot Previews Tools for designing camera trajectories

should provide a preview of the entire shot. This preview needs to be visually accurate.

In other words, the frames from the preview shot need to be as visually similar as possible

to the real captured frames. Guaranteeing visual accuracy is challenging, because the

physical dynamics of quadrotors impose constraints on the kinds of camera paths that can

be executed. If a shot planning tool does not consider these dynamics when synthesizing

camera paths, the quadrotor can deviate significantly from the intended shot during capture,

reducing the accuracy of the visual preview. Therefore, an effective tool should consider the

physical dynamics of quadrotors when synthesizing trajectories, in order to create visually

accurate shot previews.

Give Users Precise Timing Control Several participants expressed how critical it is

to be able to control the timing of a shot. Indeed, controlling the timing of a shot enables

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 19

users to specify ease-in and ease-out behavior, which is important in cinematography [9,

48]. Therefore, an effective tool should allow users to precisely control the shot’s visual

progression over time.

Consider Physical Hardware Limits Quadrotor cameras have inherent physical limits,

such as limited maximum thrust, limited maximum velocity, and a limited range of joint

angles that are achievable on the camera gimbal. Attempting to fly a trajectory that

does not respect these physical limits can cause the quadrotor to deviate significantly from

the intended trajectory, or even crash. Indeed, several participants reported destroying

equipment in accidents where they misjudged the safety of their camera trajectory or the

abilities of their hardware. Therefore, it is crucial for an effective tool to consider the

physical limits of the aircraft.

Provide Users with Spatial Awareness Participants often reasoned about the path

a camera takes through space. For example, some participants verbally describe shots by

saying “move from here to there while keeping this in view” or “circle around a point”.

Moreover, users are concerned with the quadrotor’s safety around obstacles. Therefore, an

effective tool should provide a virtual environment that is accurately aligned to the real

shot location, in order to provide users with meaningful spatial awareness.

Support Rapid Iteration and Provide Repeatability Cinematographers often per-

form multiple takes of the same shot [59]. Between takes, they tweak elements of the scene

until they achieve their artistic vision. In support of this workflow, participants expressed

the need for tools that support iteration and repeatability with quadrotors. In outdoor

environments where lighting and weather conditions can change rapidly and greatly affect

the quality of a shot, it is important for users to be able to repeat the same shot multiple

times. In addition, an effective tool should allow users to rapidly iterate, supporting the

creative process of exploring and designing shots.

3.2.2 User Interface

We reify the design principles described in Section 3.2.1 into an interactive tool for planning

and capturing quadrotor camera shots (Figure 3.1). In Horus, the user specifies camera

pose keyframes at specific times in a virtual environment. Our tool synthesizes a camera

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 20

Camera Path
Camera Pose

Keyframes

1 2

1

2

3

optimize

Control Points Easing Curve

Video Footage

UI

3

reparametrize

Camera Trajectory
as a Function of Time

Control Signals

Gimbal

Quadrotor

synthesize

Physical Camera Trajectory
Feasible

Trajectory

fly

user
iterates

UI

time time

progress progress

time

time

Figure 3.3: Overview of the major technical components of our system. We begin with
two user-specified inputs: (1) camera pose keyframes in a virtual environment (e.g., Google
Earth); and (2) a sequence of easing curve control points which specify how the camera
progress over time between keyframes. From these inputs, we compute a smooth camera
path and a smooth easing curve. We optimize the smoothness of the camera path and
easing curve in a way that obeys the physical equations of motion for quadrotors. We re-
parametrize the camera path, according to the easing curve, to produce a camera trajectory
as a function of time. We synthesize the control signals required for a quadrotor and gimbal
to follow the camera trajectory. We plot these control signals in our user interface, providing
the user with visual feedback about the physical feasibility of the resulting trajectory. The
user can edit the resulting trajectory by editing camera pose keyframes and easing curve
control points. Once the user is satisfied with the trajectory, we command a quadrotor
camera to execute the trajectory fully autonomously, capturing real video footage.

trajectory that obeys the physical equations of motion for quadrotors, and interpolates

between the user-specified keyframes.

In Horus, a camera pose keyframe consists of a look-at position, and a look-from position.

Our tool interpolates these vectors separately to synthesize a camera pose trajectory. For

simplicity, we always set the camera’s up vector equal to the world-frame up vector. If

artistic control of the camera’s up vector is desired, our keyframe representation could be

straightforwardly modified to include an up vector.

Editing the Visual Content and Timing of Shots Our tool provides a 3D view of

a virtual scene using Google Earth (Figure 3.1a). The user can set keyframes in this view

by moving the virtual camera using a trackball interface. This interface enables the user

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 21

to design shots visually. Our tool also provides a 2D map view of the scene using Google

Maps (Figure 3.1b). The user can set keyframes in this view by dragging look-from and

look-at markers around the 2D map.

The user can add, edit, and delete keyframes using the 3D scene view and the 2D map

view. These views are linked: edits in one view instantly update the other view. Whenever

a keyframe is added, edited, or deleted, Horus synthesizes a new camera trajectory in real-

time. Our tool draws the camera trajectory on the 2D map view as a curve, and in the 3D

scene view as a rollercoaster-style track, to support spatial awareness.

The user can also change the total duration of their shot, and navigate through time

using a scrubber interface (Figure 3.1c). To set a keyframe at a specific time, the user

scrubs to that moment in time and edits the camera pose, as described above. When the

user clicks the Play button or moves the scrubber, Horus instantly plays back a preview

of the shot. This functionality, when combined with our strategy for reasoning about the

physical feasibility of camera trajectories, allows the user to accurately preview their shot,

and supports rapid iteration.

The user can edit distinct easing curves for look-at and look-from position trajectories

(Figure 3.1d). The user can add, edit, and delete control points on these easing curves.

Editing these easing curves enables the user to precisely control the timing control of their

shot.

Fixing Physically Infeasible Shots Our tool synthesizes camera trajectories that are

guaranteed to obey the physical equations of motion for quadrotors. However, the user can

specify shots in Horus that exceed the physical limits of their quadrotor hardware. For

example, the user might specify two keyframes so close together in time, but so far apart in

space, that their quadrotor cannot fly fast enough to capture the shot. Our tool provides

the user with visual feedback about the physical feasibility of their trajectory, notifying the

user if their intended trajectory violates the physical limits of their hardware.

Every time the user edits their shot, Horus re-calculates dynamic and kinematic quanti-

ties of interest along the camera trajectory in real-time (e.g., gimbal joint angles, velocities,

and thrust forces). Our tool plots these quantities on a set of feasibility plots (Figure 3.1f).

In each plot, Horus shows the physical limits of the quantity with two horizontal red lines.

If any dynamic or kinematic quantity exceeds these physical limits, Horus highlights the

corresponding feasibility plot. Our tool also highlights any infeasible regions directly in

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 22

the 3D scene view (Figure 3.1a), the 2D map view (Figure 3.1b), and on the easing curves

(Figure 3.1d). In each of these views, Horus colors each point along the trajectory according

to the magnitude of the feasibility violations that occur at that point. Based on this visual

feedback, the user can adapt their shot to the physical limits of their hardware.

Capturing Real Video Footage At any time during the design process, the user can

save their shot. Once the user is pleased with their shot, they can take a laptop running

Horus, and their quadrotor, to the approximate real-world starting location of their shot.

The user can initiate an automatic capture session by clicking the Start Capture button

(Figure 3.1g). Once the user clicks this button, Horus commands a quadrotor camera to

execute the user-specified shot fully autonomously, capturing real video footage.

3.3 Generating Feasible Trajectories for Quadrotor Cameras

3.3.1 Technical Overview

We provide an overview of the major technical components of our system in Figure 3.3.

At the core of our system is a physical quadrotor camera model, in which a rigid body

quadrotor is attached to a camera mounted on a gimbal (Section 3.3.2). In this model, the

quadrotor and the gimbal are physically coupled, which enables us to consider their motion

jointly.

We analyze the dynamics of our model, and show that camera trajectories must be

C4 continuous in order to obey the physical equations of motion for quadrotors. With

this requirement in mind, we derive an algorithm for synthesizing C4 continuous camera

trajectories from user-specified keyframes and easing curves (Section 3.3.3). This algorithm

enables users to design shots visually, and gives users precise control over the timing of their

shot. At a high level, our approach is to optimize the smoothness of the camera trajectory

by solving a constrained quadratic minimization problem that guarantees C4 continuity.

We then derive an algorithm to compute the control signals required for a quadrotor

and gimbal to follow any C4 continuous camera trajectory (Section 3.3.4). This algorithm

enables Horus to provide the user with visually accurate shot previews, and visual feedback

about the physical feasibility of camera trajectories. At a high level, our approach is to

compute a trajectory through our quadrotor camera’s state space that places the gimbal at

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 23

the same world frame pose as the camera we are trying to follow at all times. We use this

state space trajectory to solve for the quadrotor and gimbal control signals.

Our algorithm for synthesizing camera trajectories is guaranteed to produce trajectories

that obey the physical equations of motion for quadrotors. However, our algorithm might

produce trajectories that exceed the physical limits of a particular real-world quadrotor. As

discussed in Section 3.2.2, our strategy for handling these physically infeasible trajectories

is interactive.

Once the user is satisfied with their camera trajectory, we command a quadrotor camera

to execute the trajectory fully autonomously, capturing real video footage (Section 3.3.5).

At a high level, we use the camera trajectory computed in Section 3.3.3 to drive a feedback

controller running on a real-world quadrotor. This feedback controller compensates for

unexpected disturbances, unmodeled forces, and sensor noise, without having to explicitly

re-compute the camera trajectory. We execute the user’s intended camera trajectory by

sampling the position and velocity of look-at and look-from points along the trajectory,

and transmitting these quantities to the quadrotor. Strictly speaking, we could attempt

to execute the camera trajectories computed in Section 3.3.3, without going to the extra

trouble of computing control signals in Section 3.3.4. However, computing control signals

enables Horus to provide visual feedback about the physical feasibility of trajectories, which

is an important safety feature. Moreover, computing control signals enables Horus to certify

the accuracy of visual shot previews, since the visual preview will be accurate only if the

trajectory is physically feasible.

3.3.2 A Quadrotor Camera Model

In this section, we introduce our physical quadrotor camera model, in which a rigid body

quadrotor is attached to a camera mounted on a gimbal. We model the gimbal as a ball-

and-socket joint that is rigidly attached to the quadrotor’s center of mass. We provide an

overview of our model in Figure 3.4.

Our model assumes that the quadrotor can be maneuvered by applying thrust forces

at the propellers, and that the camera can be oriented by applying a torque to a ball-and-

socket joint at the quadrotor’s center of mass. We refer to these forces and torques as

control inputs, since we apply them to control the physical state of the quadrotor camera.

Our goal in this section is to express the equations of motion that relate the physical state

of the quadrotor to the control inputs.

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 24

⌧q⌧q

ftft

ugug

fefe

✓g✓g

✓q✓q

Forces and TorquesDegrees of Freedom

uquq

uquq

pp

Figure 3.4: Overview of our quadrotor camera model, shown in 2D for simplicity. Degrees
of freedom: We model the physical state of a quadrotor camera with the following degrees
of freedom: the position of the quadrotor in the world frame, p; the orientation of the
quadrotor in the world frame, θq; and the orientation of the gimbal in the body frame
of the quadrotor, θg. Note that the orientation of the gimbal is defined relative to the
orientation of the quadrotor. Forces and torques: We maneuver the quadrotor by applying
thrust control at the propellers, uq. This generates a net thrust force ft, and a net torque
τq, at the quadrotor’s center of mass. The only other force acting on the quadrotor is an
external force fe, which models effects like gravity, wind, and drag. We orient the camera
by applying a torque control at the gimbal, ug. Note that thrust is always aligned with the
quadrotor’s local up direction.

Degrees of Freedom and Control Inputs We denote all the degrees of freedom in our

quadrotor camera model with the vector q. This 9-dimensional vector includes the position

and orientation of the quadrotor in the world frame, as well as the orientation of the camera

in the body frame of the quadrotor. We use Euler angles to represent the orientation of the

quadrotor and the orientation of the camera. We denote all the control inputs in our model

with the vector u. This 7-dimensional vector includes the upward thrust forces applied at

each of the quadrotor’s four propellers, as well as the torque applied at the gimbal.

Physical Limits We assume that we have limited control authority over our quadrotor

camera model, and that our quadrotor camera model can only access a box-shaped region

of its state space. This allows us to model several common physical limitations of existing

quadrotor camera systems: (1) propellers can only generate bounded thrust; (2) quadrotors

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 25

have maximum speeds imposed by their internal flight control software; and (3) gimbals

can only be oriented within a particular frustum. We refer to constraints on q and q̇ as

state constraints. We refer to constraints on u as actuator limit constraints.

Relating the Quadrotor Camera State to the Control Inputs We relate the phys-

ical state of the quadrotor camera to the control inputs as follows,

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u

subject to umin ≤ u ≤ umax

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max

(3.1)

where the matrix H models generalized inertia; the matrix C models generalized velocity-

dependent forces like drag; the vector G models generalized potential forces like gravity;

the matrix B maps from control inputs to generalized forces; and the inequalities repre-

sent the state constraints and actuator limit constraints of our system. This equation fully

determines the evolution of our quadrotor camera model over time. Tedrake [81] refers to

the form of this as manipulator form. The matrices in this equation, known as the manip-

ulator matrices, can be obtained by augmenting the quadrotor dynamics model presented

by Mellinger and Kumar [63] to include a fully actuated 3 degree-of-freedom gimbal. We

include a concise definition and a more detailed derivation for these matrices in Appendix A.

3.3.3 Synthesizing Virtual Camera Trajectories

In this section, we consider the problem of synthesizing a camera trajectory from a sequence

of user-specified camera pose keyframes and easing curve control points. At a high level,

our approach is to smoothly interpolate our camera pose keyframes to produce a camera

path. Likewise, we smoothly interpolate our easing curve control points to produce an

easing curve. We optimize the smoothness of these curves by solving a constrained quadratic

minimization problem that guarantees C4 continuity. We justify this continuity requirement

explicitly in Section 3.3.4.

We follow the standard practice in computer graphics [71] of decoupling the spatial

and temporal specification of camera motion: the camera path defines where the camera

should go, but does not define when the camera should go there. In order to define a

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 26

camera trajectory as a function of time, we re-parameterize the camera path according to

the progression in the easing curve.

Representing Camera Paths and Easing Curves as Piecewise Polynomials Any

piecewise polynomial representation of degree 5 or higher has enough free coefficients to

enforce C4 continuity. In our experience, we found that 7th degree piecewise polynomials

produce the smoothest and most reasonably bounded control signals for quadrotors. For this

reason, we choose to represent camera paths and easing curves using 7th degree piecewise

polynomials.

We represent curves through 3D space with a distinct piecewise polynomial for each

dimension. We represent camera pose trajectories with two distinct piecewise polynomial

curves through 3D space: one for the look-from point, and another for the look-at point.

Optimizing the Smoothness of Piecewise Polynomials Constraining a 7th degree

piecewise polynomial to be C4 continuous does not fully determine its coefficients. To

choose a particular set of coefficients, our approach is to optimize the overall smoothness of

the resulting curve. We describe our approach for optimizing the smoothness of our curves

in this subsection.

Suppose we are given k + 1 scalar keyframe values, v0:k, placed at the scalar parameter

values, u0:k. We would like to find k distinct polynomial segments that stitch together

to produce a C4 continuous curve that exactly interpolates our keyframes, and we would

like the resulting curve to be as smooth as possible. Our approach here is similar to the

quadrotor trajectory synthesis approach of Mellinger and Kumar [63].

Stating our problem formally, let c be the vector of all the polynomial coefficients for all

the distinct polynomial segments. Let di,j be the jth derivative of the piecewise polynomial

curve p with respect to the scalar parameter u at keyframe i. Let d be the vector of all

such derivatives. We would like to find the optimal set of coefficients and derivatives, c∗

and d∗ respectively, as follows,

subject to pi(0) = vi pi(1) = vi+1

dj

dūji
pi(0) = wjidi,j

dj

dūji
pi(1) = wjidi+1,j

(3.2)

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 27

where pi is the ith polynomial segment; ūi = u−ui
ui+1−ui ∈ [0, 1] is a normalized scalar parameter

used to evaluate pi; j ∈ {1, 2, 3, 4} is an index that refers to the various derivatives of our

polynomial segments; and wi = ui+1 − ui is the width of the ith polynomial segment in

non-normalized parameter space.

The objective function in this optimization problem attempts to make the resulting curve

as smooth as possible. The equality constraints in this optimization problem ensure that

our keyframes are correctly interpolated, and that the derivatives of adjacent polynomial

segments match, taking into account that some segments are wider than others in non-

normalized parameter space.

We can express the optimization problem in equation (3.2) as a constrained quadratic

minimization problem as follows,

x∗ = arg min
x

xTQx subject to Ax = b (3.3)

where x is the concatenated vector of our coefficients and derivatives; Q is the symmetric

positive definite matrix obtained by expanding the expression
∫ 1

0

(
d4

dū4i
pi

)2
dūi from equation

(3.2); A is the matrix and b is the vector that can be obtained by expressing the equality

constraints from equation (3.2) in matrix form. The problem in equation (3.3) can be solved

by solving the following linear system,2Q AT

A 0

x∗

λ∗

 =

0

b

 (3.4)

where λ is the Lagrange multiplier variable obtained by transforming equation (3.3) into

unconstrained form [15].

When solving the constrained quadratic minimization problem in this section, we found

that spacing our camera pose keyframes in non-normalized parameter space according to

a chordal parameterization [88] helped to produce well-behaved smooth camera paths. To

that end, we also constrained the 1st derivatives at the endpoints of our camera path as we

would for Natural Cubic Splines [12].

Re-parameterizing Camera Paths as Functions of Time At this point, we have

defined a camera path through space, and an easing curve that defines the progress of

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 28

the camera over time. In order to define a camera trajectory as a function of time, we re-

parameterize the path according to the progression given in the easing curve using standard

numerical techniques [34].

Our camera path is C4 continuous with respect to u, and our easing curve is C4 con-

tinuous with respect to time. Therefore our camera trajectory will be C4 continuous with

respect to time after this re-parameterization step.

3.3.4 Synthesizing State Space Trajectories and Control Trajectories

In this section, we consider the problem of synthesizing a state space trajectory and corre-

sponding control trajectory that will command our quadrotor and gimbal to follow a given

virtual camera trajectory in the world frame. At a high level, our approach is to compute a

trajectory through our quadrotor camera’s state space, that places the gimbal at the same

world frame pose as the virtual camera we are trying to follow at all times. We then sub-

stitute this state space trajectory into equation (3.1) to solve for the corresponding control

trajectory. Note that the quadrotor’s orientation is partially determined by its direction of

acceleration (see Listing 1). Therefore, we must use the available degrees of freedom in the

gimbal, to align the orientation of the gimbal with the orientation of the virtual camera we

are trying to follow.

Computing a State Space Trajectory In this subsection, we compute a state space

trajectory for our quadrotor camera as a function of a given virtual camera trajectory. We

assume that the virtual camera trajectory has been discretized into a sequence of T + 1

camera poses evenly spaced in time. We also assume that the virtual camera trajectory is

C4 continuous. We justify this continuity requirement explicitly at the end of this section.

We begin by numerically computing the linear acceleration of the virtual camera along

the trajectory using finite differences. At each moment in time along the trajectory, we

solve for the degrees of freedom in our quadrotor camera model as follows,

1. Set the position of the quadrotor equal to the position of the virtual camera.

2. Compute the orientation of the quadrotor based on the acceleration and orientation of

the virtual camera (see Listing 1). In this step, we align the quadrotor’s orientation to

its direction of acceleration. This approach guarantees that the quadrotor’s orientation

is always consistent with equation (3.1). Or stated more precisely, that the state space

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 29

trajectory we compute in this section, when substituted into equation (3.1), always

yields a left hand side that is in the column space of the matrix B.

Our algorithm here is similar to the algorithm presented by Mellinger and Kumar [63].

However, we adapt their algorithm to determine the quadrotor’s orientation from the

virtual camera’s orientation (and its direction of acceleration), rather than requiring

the quadrotor’s yaw angle to be specified explicitly. This is an important practical

difference, since it allows users to specify shots visually, rather than having to explicitly

specify yaw angles.

3. Compute the orientation of the gimbal in the body frame of the quadrotor, based

on the orientation of the virtual camera and quadrotor in the world frame. For this

step, we use the relationship RW,C = RW,QRQ,G , where RW,C is the rotation matrix

that represents the orientation of the virtual camera in the world frame; RW,Q is the

rotation matrix that represents the orientation of the quadrotor in the world frame;

and RQ,G is the rotation matrix that represents the orientation of the gimbal in the

body frame of the quadrotor.

At this point, we have solved for the position and orientation of our quadrotor, as well

as the orientation of our gimbal, at every moment in time along the discretely sampled

virtual camera trajectory. We compute the Euler angle representations of the quadrotor

and gimbal orientations using standard numerical techniques [24]. In doing so, we have

solved for the state space trajectory, corresponding to the given virtual camera trajectory.

Uniqueness The state space trajectory we compute above is not unique. There are

other state space trajectories that will follow the given virtual camera trajectory. For

example, the quadrotor could be at a different yaw angle, and the gimbal could also be at

a different orientation to compensate. Among this family of valid state space trajectories,

our algorithm computes the state space trajectory that sets the gimbal’s yaw angle to zero,

while minimizing the magnitude of the gimbal’s pitch angle (Listing 1, lines 3-5). This

approach means our algorithm can be used without modification on quadrotor cameras

with 2 degree-of-freedom gimbals, as well as the 3 degree-of-freedom gimbal we assume in

our model.

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 30

Input:

• Acceleration of the virtual camera in the world frame, p̈c.

• Virtual camera’s local x axis (i.e., the look-at vector) in the world frame, xc.

• External force in the world frame, fe.

• Mass of the quadrotor camera, m.

Output:

• Rotation matrix representing the quadrotor’s orientation in the world frame, RW,Q.

1: f ← mp̈c

2: ft ← f − fe
3: yq ← normalized ft
4: zq ← normalized yq × xc

5: xq ← normalized zq × yq

6: RW,Q ← the rotation matrix defined by the axes xq, yq, zq

Listing 1: Computing the orientation of the quadrotor in the world frame. We begin by
substituting linear acceleration and mass into Newton’s Second Law to solve for net force
(line 1). We make the observation that we can always decompose the net force acting on
our quadrotor into a thrust force and an external force, where the external force models
effects like gravity, wind, and drag. With this observation in mind, we solve for thrust force
(line 2). We make the observation that our quadrotor model can only generate thrust forces
along its local y axis. With this observation in mind, we normalize the thrust force and
set the quadrotor’s local y axis equal to the normalized thrust force vector (line 3). This
approach guarantees that the quadrotor’s orientation is always consistent with equation
(3.1). Or stated more precisely, that the state space trajectory we compute in Section 3.3.4,
when substituted into equation (3.1), always yields a left hand side that is in the column
space of the matrix B. In our algorithm, the quadrotor’s local y axis, in combination with
the virtual camera’s local x axis, uniquely determines the orientation of the quadrotor (lines
4–6).

Computing a Control Trajectory In this subsection, we compute a control trajectory

u0:T , as a function of our state space trajectory q0:T . We begin by computing the 1st and 2nd

derivatives of our state space trajectory, q̇0:T and q̈0:T respectively, using finite differences.

We compute our control trajectory by repeatedly substituting q, q̇, and q̈ into equation

(3.1), and solving for u, at each moment in time along the discretely sampled state space

trajectory. We use the Moore-Penrose pseudoinverse of B to invert equation (3.1), which in

this case, is guaranteed to yield an exact unique solution for u. This is because we explicitly

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 31

constructed q0:T to be consistent with the equations of motion for our system, so the left

hand side of equation (3.1) is always in the column space of B, and B is always full column

rank. We include a proof that B is always full column rank in the Appendix A

C4 Continuity A virtual camera trajectory must be at least C4 continuous with respect to

time if we hope to synthesize a control trajectory to follow it. At a high level, this continuity

requirement arises from the fact that a quadrotor can only apply thrust forces along its local

up axis. Indeed, we see in Listing 1 (lines 1–3) that we use the 2nd derivative of the virtual

camera position p̈c to solve for the quadrotor’s orientation degrees of freedom. Moreover,

we see in equation (3.1) that we use the 2nd derivative of the quadrotor’s degree-of-freedom

vector q̈ to solve for the control input u. Therefore, the control input u is a function of the

4th derivative of the virtual camera trajectory. If a virtual camera trajectory is not at least

C4 continuous, then the control input will not be well-defined across the trajectory. This

continuity requirement is also noted by Mellinger and Kumar [63].

Unbounded Control Inputs The state space trajectory q0:T we compute in this section

is guaranteed to satisfy the equations of motion given in equation (3.1). In other words,

there exists some control trajectory u0:T that will follow q0:T . However, the control inputs

required to follow q0:T might exceed the physical limits of a particular real-world quadrotor.

In general, it is not guaranteed that u0:T and q0:T will satisfy the actuator limit constraints

and state constraints given in equation (3.1). We must take extra care to ensure that q0:T

and u0:T satisfy these constraints. We address this issue interactively in our user interface,

as described in Section 3.2.2.

3.3.5 Real-Time Control System and Hardware Platform

In this section, we describe the real-time control system and hardware platform we use to

execute camera trajectories autonomously and capture real video footage.

Real-Time Control System We show a block diagram of our real-time control system

in Figure 3.5. We build our real-time control system on top of the open source ArduPilot

autopilot software [8]. The ArduPilot software runs on board the quadrotor, and provides

a hierarchical feedback controller for following camera trajectories, similar to the controller

described by Kumar and Michael [47]. The ArduPilot feedback controller takes as input

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 32

GROUND

Look-From
 Position,
Velocity

Look-At
Position,
Velocity

Trajectory
Follower

5Hz

Look-At
Position

Controller
50Hz

Sensors
&

Actuators

Motor
Controller

490Hz

Gimbal
Controller

2000Hz

Desired Body-frame Thrust

Desired
World-frame
Vehicle Yaw

Desired World-frame
Camera Orientation

Attitude
Controller

100Hz

Motor
Speeds

Desired
World-frame

Vehicle
Roll & Pitch

Feasible Trajectory,
Time Scaling Factor

Desired
Body-frame

Torques

State Estimation
50Hz

Look-From
Position

Controller
100Hz

VEHICLE

System State

System State

Figure 3.5: Block diagram of our real-time control system for executing camera trajec-
tories. On a ground station (left), our trajectory follower (white) samples the camera
trajectory, transmitting the sampled position and velocity of look-at and look-from points
to the quadrotor. Our trajectory follower allows the user to optionally adjust a time scal-
ing factor, to execute the trajectory faster or slower. On board the quadrotor (right), the
higher-level look-from and look-at position controllers interface with a lower-level attitude
controller (yellow) and motor controller (green), similar to those described by Kumar and
Michael [47].

the position and velocity of look-at and look-from points along a camera trajectory. Our

real-time control system runs on a ground station. Our system executes the user’s intended

camera trajectory by sampling the position and velocity of look-at and look-from points

along the trajectory, and transmitting these quantities to the quadrotor.

Time Scaling and Safety While the camera trajectory is being executed, our real-

time control system allows the user to optionally adjust a time scaling factor. By default,

our system samples the camera trajectory uniformly in time. If the user adjusts the time

scaling factor, our system applies a linear scaling to the time step used to determine the next

sampling location along the trajectory. Using our time scaling functionality, we implement

a full stop command, which is an important safety feature. Setting the time scaling factor

to 0 pauses the quadrotor at its current position. This allows the user to abort capture at

any time, and helps to avoid crashes.

Hardware Platform Our hardware platform consists of an 3D Robotics IRIS+ quadro-

tor [2] running the open source ArduPilot autopilot software [8] on a Pixhawk autopilot

computer [62]. We equip our quadrotor with a 2-axis gimbal and a GoPro Hero 4 Black

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 33

camera. At the time of writing, this hardware setup is priced at $1300, and is representative

of an entry-level quadrotor for aerial cinematography.

System Identification We determined the system parameters used in our quadrotor

camera model, which are specific to our hardware, partially through direct measurement and

partially through published engineering specifications. We used a dynamometer to measure

the maximum force and torque our rotors could generate, and estimated the moment of

inertia from the quadrotor’s mass and shape. We used the maximum lean angles, maximum

velocities, and maximum accelerations published by the ArduPilot community [8].

3.4 Evaluation and Discussion

Expert 1 Expert 2 Novice 1 Novice 2

In
st

ru
ct

ed
 S

ho
t

Fr
ee

fo
rm

 S
ho

t

a c

b

e

fd h

g

Figure 3.6: Camera shots created by the two experts (left) and two novices (right) in our
user study. The look-from and look-at trajectories for each shot are shown in red and
blue respectively. The shots created by our participants contain a wide variety of camera
motions.

In this section, we describe the user study we conducted to evaluate Horus, and discuss

our key findings.

User Study We performed a user study aiming to understand whether our tool Horus

enables the creation of shots that would be challenging to capture otherwise. We recruited

two expert cinematographers, and two novice cinematographers with computer graphics

experience. Both of our expert cinematographers had extensive experience manually flying

quadrotors for cinematography.

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 34

After demonstrating the capabilities of Horus in a 30 minute tutorial, we gave all four

participants identical tasks. We first tasked them with creating one shot featuring the 285

foot tall Hoover Tower (i.e., the instructed shot). The tower was selected for its striking ap-

pearance and large scale, providing an opportunity for interesting shots that are well-suited

for quadrotor cinematography. We also tasked participants with creating a second shot of

their own choosing (i.e., the freeform shot). We instructed them to create and refine shots

that are cinematically interesting, and within the physical limits of our quadrotor hardware,

as visualized in Horus. They had 90 minutes to create these shots, during which we were

available to answer questions. Our tool saved a log and screen recording of each session.

Afterwards, they accompanied us to capture their shots, watched the resulting videos, and

filled out an exit questionnaire.

All four participants successfully completed the two tasks. We show the shots from our

users in Figure 3.6, and henceforth we refer to the shots using the lettering in this figure.

The participants’ shots included a wide variety of camera motions. None of the shots

violated any of the kinematic or dynamic limits shown on the feasibility plots in Horus. We

were able to successfully capture all eight shots true to the virtual previews from Horus.

Novices and Experts Successfully Designed Challenging Shots We asked the ex-

pert cinematographers to describe what elements were challenging about the shots they

created, if they were to capture them with existing approaches for quadrotor cinematog-

raphy. Each expert identified camera motions in their shots that would either take many

attempts, or would have to be modified to be less challenging. We identified similar camera

motions in the novice shots (see Figure 3.7). We summarize the similarities between novice

and expert shots as follows,

• Expert shot (c) required continuous re-orientation of the camera relative to the flight

path, with the look-from trajectory in red arcing away from a fixed look-at point. We

found a similar arcing motion around a fixed look-at point in novice shots (g) and (h).

This camera motion is difficult to execute manually, because it requires continuously

and precisely re-orienting the camera during flight.

• Expert shot (a) required flying straight towards a point over a long distance, which

we also found in novice shot (f). This camera motion is difficult to execute manually,

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 35

N
ov

ic
e

1

 E
xp

er
t 1

Figure 3.7: Novices and experts successfully designed shots with challenging camera motions
using Horus. The expert shot (top) is especially challenging to execute manually, since it
requires smoothly changing the camera orientation to look down at Hoover Tower exactly
as the quadrotor flies over it. The novice shot (bottom) contains a similar camera motion.

since small initial errors in the direction of flight have to be corrected, leading to

visual artifacts in the resulting video.

• Expert shot (a) required smoothly adjusting the rate of camera re-orientation, to end

at a specific orientation at a specific time. We found this camera motion in novice

shot (a). We show these two shots in Figure 3.7. This camera motion is especially

difficult to execute manually. The camera must translate towards a point while tilting

down, so that the end of the tilting motion exactly coincides with being above the

tower, all while approaching the tower in a straight line. The expert that designed

shot (a) remarked that executing such a shot manually would require approximately

20 attempts.

This finding suggests that users can successfully design compelling shots with challenging

camera motions using Horus, regardless of their level of expertise with quadrotors.

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 36

 2

 0

 -2

 -4

 120

 100

 80

 60 0 20 40 60 80

m
et

er
s

Time (seconds)

 120

 100

 80

 60

m
et

er
s /

 se
co

nd

0 20 40 60 80

 2

 0

 -2

 -4

Time (seconds)m
et

er
s /

 se
co

nd

0 20 40 60 80
Time (seconds)

0 20 40 60 80

m
et

er
s

Time (seconds)

Velocity: Vertical Velocity: Vertical

Altitude Above Sea LevelAltitude Above Sea Level

Revision 7 Revision 8

Figure 3.8: Participants were able to modify infeasible shots into feasible shots using the
visual feedback we provide in Horus. After his 7th revision, Expert 1 found that his shot
was infeasible (left). He edited both the altitude and timing of 3 keyframes to create a
feasible shot as his 8th revision (right). Horizontal red lines indicate physical limits of our
quadrotor hardware.

Previewing Shots Visually was Useful Our exit survey asked participants to identify

the most useful feature of our user interface, and rank the features in our user interface on a

5-point scale from not useful to indispensable. Three of the four participants identified the

ability to visually preview their shot as being the most useful, and all users rated this feature

as a 4 or higher. Indeed, Figure 3.1 shows that our visual preview accurately estimates the

appearance of recorded video footage. This finding validates our approach of enabling users

to design shots visually, and highlights the importance of ensuring physical feasibility during

the design process.

Controlling the Timing of Shots was Useful All participants used the easing curves

to refine the timing of their shots. Participants used the easing curves to modify the pacing

of their shots, and to fix feasibility violations. In all shots, participants adjusted the default

easing curve control points. Of the eight shots created, six featured additional control points

added by the participant. This finding validates our approach of enabling users to precisely

control the timing of their shots.

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 37

Visual Feasibility Feedback was Useful, Although Some Participants Would

Have Preferred an Automatic Solution All of our participants responded to the

visual feasibility feedback in Horus. Users successfully modified their shots until they were

within the physical limits of our hardware, as shown on the feasibility plots in Horus. Fig-

ure 3.8 shows Expert 1 modifying both the altitude and timing of three keyframes to stay

within the vertical speed limit of our quadrotor. However, participants were divided in their

opinions about our feasibility plots. One participant rated it as the best part of the tool. He

described it as essential to creating shots at the physical limits of the hardware. Another

participant expressed difficulty knowing exactly how to tweak trajectories in response to the

visual feedback. This finding suggests that some users would prefer an automatic solution

for fixing feasibility issues, while others like precise control over their shots. We believe that

developing an automatic solution to fix feasibility violations is an interesting direction for

future work.

Accuracy To quantify how well our quadrotor camera system follows trajectories, we

compared the intended trajectories created by our users, to the actual trajectories executed

by our quadrotor (see Figure 3.9). The average position error across all shots was 1.12m

(σ = 0.57), and was never greater than 3.01m. The average velocity error across all shots was

0.11m/s (σ = 0.10), and was never greater than 0.80m/s. In general, our system is limited

by the positioning and pointing accuracy of our quadrotor. This limitation makes close-up

shots particularly challenging, where small errors in position lead to more noticeable visual

errors. However, our participants responded positively when they saw the captured footage

for the shots they created. This finding suggests that the level of accuracy achievable with

current-generation quadrotor hardware is sufficient to obtain a variety of compelling shots.

Concluding Remarks Overall, all participants were enthusiastic about using our system.

Experts appreciated having a powerful tool to visually plan complex trajectories and execute

repeatable takes (e.g. Expert 1 remarked “Normally I fly less ambitious paths to avoid

making mistakes!” and “I love how I can get the same shot, take after take, day after day!”).

Novices were particularly enthusiastic about being able to capture high-quality video footage

with quadrotors without having experience flying them (e.g., Novice 2 remarked, “I liked

how it turned a ‘drone flying problem’ into a ‘drawing a curve in space problem’. I don’t

know how to fly a drone and don’t want to, but I find drawing in 3D very intuitive.’ ’).

CHAPTER 3. GUIDING QUADROTORS WITH 3D ANIMATION PRIMITIVES 38

 3

 2

 1

 0
0 10 20 30

Time (seconds)

Position Error
(meters)

Expert 1 Freeform Shot Novice 2 Instructed Shot

0 20 40 60 80 100 120

0.8

0.6

0.4

0.2

 0

Time (seconds)

(meters / second)
Velocity Error

Time (seconds)

0.8

0.6

0.4

0.2

 0
0 10 20 30

(meters / second)
Velocity Error

Time (seconds)
0 20 40 60 80 100 120

 3

 2

 1

 0

Position Error
(meters)

Figure 3.9: Position and velocity error of our quadrotor for the longest (left) and shortest
(right) shots. The position error is less than 3.01 m at all times, and the velocity error is
less than 0.80 m/s at all times. Note that the horizontal scaling varies varies on the left
and right subplots.

Chapter 4

Evaluating RTK GPS for

Quadrotor Localization

In the previous chapter, we were limited to filming large structures largely due to the

relative inaccuracy of automatic quadrotor positioning. We would like to autonomously

capture smaller objects at closer range, such as people—which happen to be the subject

of the next chapter. We choose to approach this problem by investigating a high accuracy

localization sensor. Specifically, we investigate the precision and accuracy of Real-Time

Kinematic GPS. Real-Time Kinematic or RTK GPS is a signal processing technique that

can estimate positions of GPS receivers to within 2 cm accuracy, which is much better than

the roughly 2 m accuracy of conventional GPS.

In our work, we rely on RTK GPS to enable repeatable autonomous cinematography, but

accurate localization has further-reaching implications: improving the quality of mapping

and surveying, enabling autonomous navigation, and aiding collision avoidance. In this

chapter, we examine the positioning performance of these newly-available single-frequency

RTK GPS receivers to provide high-accuracy positioning for a quadrotor MAV. Given the

arrival of cheap and compact single-frequency RTK GPS receivers, we feel an analysis of

their performance in the context of micro aerial vehicles is a timely contribution to the

broader robotics field.1

1We further analyze the impact of using RTK GPS as part of a localization suite for filming subjects in
the upcoming chapter, section 5.8

39

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 40

Figure 4.1: Our modified 3D Robotics Iris Quadrotor. A second platform on top of the
quadrotor body holds a RTK GPS antenna and a conventional GPS module. This platform
provides electromagnetic shielding between the sensitive GPS antennas and the rest of the
quadrotor, as well as a clear sky-view during flight. An Intel Galileo companion computer is
mounted on the underside of the body. The companion computer serves as an independent
datalogger.

4.1 Approach

Real-time kinematic (RTK) GPS exploits information about the GPS carrier wave to im-

prove the accuracy of position estimates. RTK GPS compares the phase of the received

carrier wave between two GPS receivers to derive an accurate vector between a stationary

“base station” GPS and moving “rover” GPS. Note the requirement for two GPS receivers,

in comparison to conventional GPS positioning that requires only a single receiver. This

approach can provide centimeter-accurate positioning with millisecond latencies. How-

ever, RTK GPS systems tend to be expensive and bulky. Furthermore, RTK GPS can

only calculate centimeter-accurate positions once an integer ambiguity is resolved, and am-

biguity resolution algorithms have runtimes on the order of minutes for single-frequency

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 41

Figure 4.2: Our base station cart, from where we issue commands and monitor the system.
It contains a Piksi RTK GPS connected to a NovaTel pinwheel antenna, a laptop computer,
a telemetry radio for data communication, and a remote control radio for joystick control
inputs.

receivers [80, 84]. That being said, single-frequency receivers are desirable since they can

be built using off-the-shelf GPS components that have benefited from the economies of

scale from integration in mobile phones and vehicle navigation systems. For a full treat-

ment of the RTK GPS technique, we refer the reader to the excellent book by Kaplan and

Hegarty [41].

In this work we examine Swift Navigations Piksi RTK GPS receiver [80]. We choose to

focus on the Piksi GPS since it is the first, and at the time of this writing, only commercially-

available, affordable RTK GPS system designed for micro aerial vehicles. Piksi is a single-

frequency GPS receiver, operating in the consumer L1 GPS band (1.5GHz). Piksi is attrac-

tive as a GPS receiver for commercial and research micro-UAVs due to its small size, low

cost, low weight, and open source hardware and software. Since Piksi’s release, additional

single-frequency RTK GPS receivers are appearing, such as the u-blox Neo-M8P [84].

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 42

Our approach to quantify Piksi’s performance is to compare Piksi to a conventional

single point position GPS under real world conditions on a quadrotor micro aerial vehicle.

We quantify the precision and accuracy of the Piksi RTK GPS in three real-world scenarios:

(1) recording the position of a given point (2) hovering the quadrotor at a given point, and

(3) autonomously land at the quadrotor’s takeoff point.

4.2 Methodology

We perform a series of tests to characterize the accuracy and precision of quadrotor local-

ization. These tests were designed to reflect real-world outdoor conditions for a quadrotor

MAV in a suburban location. Tests were performed in Northern California, USA. These

tests were designed such that unambiguous ground truth data are easy to acquire without

elaborate measuring tools. To that end, the tests focused on measurements of stationary or

zero-setpoint conditions, where the vehicle was commanded to remain in a fixed location,

or return to a previous location.

We first investigate GPS performance without flying the quadrotor. We quantify preci-

sion as the GPS’s ability to measure a fixed position over time. We quantify accuracy as

the GPS’s ability to measure returning to a given position after moving away, commonly

referred to as a “loop closure test”. These tests use known, fixed positions as ground truth,

against which we compare both Piksi and conventional GPS. These tests are designed to

show the baseline accuracy of Piksi in comparison to conventional GPS, summarized in the

first row of Table 4.1.

We then investigate the performance of the quadrotor’s flight behavior when Piksi is used

as a localization method. We perform the equivalent non-flying tests in this flying condition:

We quantify the precision of our quadrotor’s position hold capability over time. We quantify

the accuracy with which the quadrotor returns and lands at a known, fixed position. These

tests also rely on known, fixed positions as the setpoints for the quadrotor control system.

For position hold, we use the Piksi itself as the ground truth measurement of accuracy -

a reasonable ground truth given the accuracy we find in our non-flying condition. These

tests are designed to show the accuracy of quadrotor flight when RTK GPS is deployed,

summarized in the second row of Table 4.1.

Lastly, we investigate the end-to-end acquisition performance of Piksi in terms of the

time from initial boot until acquiring an RTK lock, known as the Time To First Fix test.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 43

Condition Precision Test Accuracy Test Acquisition Test

Non-Flying Stationary Position Loop Closure
TTFF

Flying Stationary Hover Landing

Table 4.1: Summary of tests performed to quantify RTK GPS accuracy. Non-flying tests
demonstrate the baseline performance of RTK GPS in comparison to conventional GPS.
Flying tests demonstrate the performance of quadrotor flight when guided by RTK GPS.
Acquisition tests demonstrate the Time To First Fix performance of single-frequency RTK
GPS.

Across all the previous tests, we measure the time from startup until first RTK lock. This

test is designed to show a design trade-off when using single-frequency RTK GPS systems,

summarized in the last column of Table 4.1.

We quantify positional accuracy and precision as the Circular Error Probability measure,

or “CEP”. CEP is defined as the radius of the circle in which some percentage of samples fall.

This measurement is commonly used in the literature as a measure of GPS performance [41].

For our tests, we measure CEP95, the radius in which 95% of samples fall. We measure

CEP95 in the north-east coordinate system. Since GPS is known to provide significantly

less accuracy in altitude, we separately quantify altitude performance in meters.

4.2.1 Hardware and Software Platform

Our testing hardware consists of three physical components: A quadrotor equipped with

an RTK and a conventional GPS, a base station which includes a second RTK GPS, and a

landing pad.

We selected the 3D Robotics Iris quadrotor [16], shown in Figure 4.1. We feel this

quadrotor is a good representation of today’s commercially available quadrotor MAVs, and

its fully-open-source nature allows for easy modification. The Iris quadrotor measures 0.55 m

from motor-to-motor, has an all-up weight of 1.282 kg, with an additional payload capacity

of 0.425 kg.

The Iris comes equipped with a 3D Robotics single point precision GPS unit containing

a conventional u-blox Lea-6 conventional GPS module and a Taoglas GPS antenna [5]. The

quadrotor uses this conventional GPS to measure its 2D latitude-longitude position, and an

onboard barometer to measure its altitude.

For telemetry data, this quadrotor features a 57 600 baud 900 MHz data radio [3]. A

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 44

second, independent RC radio system provides joystick control for manual flight by a pilot.

We added an Intel Galileo Gen 2 single-board computer [40] running custom data logging

software to serve as an independent verification of Piksi’s performance separate from the

onboard flight controller’s logging system. We also integrated the Piksi GPS as the primary

flight control GPS for our test platform.

The integration of Piksi with the quadrotor followed instructions provided by Swift

Navigation [67]. The top cover of the Iris was removed, and an additional platform was

added, as seen in figure 4.1. This platform held both the Piksi and u-blox receivers. To

reduce electromagnetic interference, this platform was shielded with copper tape, and the

telemetry functionality of the remote control receiver was disabled. We further reduced

electromagnetic interference by braiding and copper-wrapping the serial cable from the

Piksi GPS to the Pixhawk flight controller. Piksi was connected to the GPS2 port of the

onboard Pixhawk flight controller. The Piksi onboard the vehicle was configured to produce

position, velocity and time solutions at 5 Hz. The Piksi GPS was connected to a Linx SH

external antenna [55], mounted on a 10cm x 10cm aluminum ground plane. This antenna

comes equipped with a 31db LNA. The 3D Robotics GPS unit was mounted directly behind

the Linx antenna on the same platform.

The Iris quadrotor is equipped with a Pixhawk autopilot hardware [60] running the Ar-

duCopter v3.3 RC9 [8] autopilot software. The ArduCopter estimation and control system

consists of the following relevant parts: (1) Incoming sensor data from onboard inertial

measurement units, barometers, and both GPSes. (2) Efficient internal storage, into which

sensor data is discretized. (3) An Extended Kalman Filter of EKF, which blends sensor

data into an estimated state of the quadrotor. (4) A sequence of PID controllers arranged as

a successive loop closure based controller. The lowest level PID controller is responsible for

stabilizing the rate of rotation and net thrust, while the top level controller is responsible

for holding a position or following a given path. We used the default parameter tuning for

the control and estimation system provided for the 3D Robotics Iris quadrotor.

Our base station consisted of a hand-built cart, equipped with a base station Piksi RTK

GPS antenna, telemetry and control radios, and a laptop computer, as shown in Figure

4.2. The base station laptop computer ran ArduPilot’s ground station software, Mission

Planner [69]. This software package was used to send commands, forward GPS observations

from the base station GPS, and monitor the quadrotor during flight.

As mentioned above, RTK GPS requires a base station GPS providing observations

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 45

of the GPS constellation to the RTK GPS mounted on the quadrotor. Traditionally, the

moving RTK GPS is referred to as the “rover” GPS, versus the stationary “base” GPS. The

base station Piksi was connected to a NovaTel Pinwheel 701-GG antenna [68]. Observation

data from the base station Piksi was sent to the quadrotor using the 3D Robotics 900 MHz

telemetry radio. This base station Piksi GPS provides GPS observations at 5 Hz.

Lastly, a custom landing pad was used to record takeoff and landing locations by hand.

We constructed this landing pad from a 4’ by 4’ foam-core board. A point was marked on

the board as the takeoff location, where we placed the center of gravity of the quadrotor

before takeoff. During landing tests, we manually marked the board with the position of

the center of gravity of the quadrotor after landing.

4.2.2 Data Collection and Analysis

We separately report on several components of this localization system. (1) The raw position

measurement from the Piksi GPS, reported as double precision floating point latitude and

longitude degrees. (2) The position measurement of the Piksi GPS as discretized into fixed-

point degrees to an accuracy of 7 decimal places. (3) The u-blox GPS as discretized into

fixed-point degrees to an accuracy of 7 decimal places, along with the barometer altitude

discretized into centimeters. (4) The fused position calculated by the EKF, blending the

Piksi RTK GPS and the IMU. During conventional operation, the u-blox GPS is only used

for north-east positioning, and the barometer is used for altitude measurement. We follow

this approach when we report conventional GPS performance, with altitude coming from

the barometer.

We record several data streams, shown in Table 4.2. Data was recorded on the onboard

Pixhawk flight controller. ArduCopter provides a “dataflash” library that records named

and timestamped data messages for each subsystem of the controller. Additionally, the raw

serial data from Piksi was also recorded on an Intel Galileo. The data from the Intel Galileo

is used to verify the correctness of the dataflash logs. This independent measurement is

useful, since the flight controller software relies on fixed-point integer arithmetic for position

calculations which can introduce discretization errors. All the recorded data was analyzed

using custom Python code. Statistical analysis was performed using numpy and scipy [85],

and graphs were created using matplotlib [39].

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 46

Datastreams collected during each test

Time To First RTK Fix

RTK GPS 3D Positions (t)

Discretized RTK GPS 3D Positions, 7 decimal places (t)

EKF-fused RTK GPS 3D Positions (t)

Conventional Barometer-aided GPS 3D Positions (t)

Table 4.2: Data streams collected during RTK GPS testing. First, we measure the time from
power-on until first RTK fix. We collect both raw and discretized RTK GPS positions, since
the flight controller performs a position discretization. We then collect the 3D positions
produced the quadrotor’s EKF. Lastly, we collect the 3D positions produced by the u-blox
GPS in latitude-Longitude, and the onboard barometer for altitude. Position streams are
recorded at 5 Hz.

4.2.3 Testing Procedure

The general procedure followed the pattern as follows:

• Pick a testing location with a clear sky view.

• Place the base station cart and lock in position.

• Place the landing pad at least 6 ft from base station.

• Set quadrotor in location as demanded by the specific test in question.

• Power on quadrotor

• Connect base station software to quadrotor.

• Start transmitting GPS observations from the base station Piksi to the rover Piksi.

Start timer to record time-to-first-fix.

• Wait for RTK lock.

• Once GPS has achieved RTK lock, record the time-to-first-fix (TTFF)

• Perform specific test

• Power off quadrotor

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 47

Raw Piksi u-blox & Baro
ArduCopter
Piksi

ArduCopter
EKF

CEP95 (m)
North-East

0.0176 1.675 0.0186 0.051

Std. Dev. (m)
Altitude

0.02037 0.1084 0.02065 0.1094

Table 4.3: Results demonstrating the precision of the components of a quadrotor’s localiza-
tion system when stationary. Raw Piksi exhibits two orders of magnitude higher precision
that a conventional u-blox GPS in the north-east reference frame, and an order of magnitude
higher precision than the barometer in altitude. ArduCopter’s fixed-point math dilutes the
precision by less than 2 mm, while ArduCopter’s EKF dilutes the precision by about 3 cm.
Position measurements reported over 5 trials of 5 minutes each, 1500 position samples per
trial, with the quadrotor stationary on the ground during each trial.

4.3 Results

We now present quantitative and visual results for all our tests. We first present the

precision and accuracy of the Piksi RTK GPS when manipulated by hand. We then present

the performance of our quadrotor using the Piksi GPS during flight.

4.3.1 Precision of Stationary Position Measurement

This test measures Piksi’s precision while stationary, with the quadrotor placed at a fixed

position on the ground. We quantify position precision over a 5-minute window across 5

trials. We also report position precision over a 20-minute window across 2 trials. North-East

precision is reported as the CEP95 radius. Altitude precision is reported as the standard

deviation over the duration of the test.

Test Procedure We perform this test as follows: Set the quadrotor in a fixed position

with a clear view of the sky, and power on. Wait until the Piksi GPS acheives RTK lock,

then arm the quadrotor into flight mode without enabling the motor controllers. Let the

throttle idle and record data for 5 minutes, disarm, and turn off the quadrotor. Repeat for

5 trials. We then follow the same procedure and record data for 20 minutes over two trials.

Test Result We present the results of each 5-minute test in Figure 4.3, and summarize

the results in Table 4.3. We find that the Piksi RTK GPS provides two orders of magnitude

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 48

Raw Piksi u-blox & Baro
ArduCopter
Piksi

ArduCopter
EKF

CEP95 (m)
North-East

0.016 1.672 0.0175 0.023

Std. Dev. (m)
Altitude

0.01652 0.3109 0.01675 0.31255

Table 4.4: Longer-term precision results for a quadrotor’s localization subsystems when
measuring a stationary position. Over two 20-minute trials, raw Piksi continues to exhibit
two orders of magnitude more north-east precision and one order of magnitude more altitude
precision than a conventional u-blox barometer-aided GPS. Data is reported over two 20-
minute trials, 6000 position samples per trial, with the quadrotor stationary on the ground
during each trial.

higher precision in north-east position than the conventional u-blox GPS, with 95% of

position samples falling within a 1.6cm radius. Furthermore, altitude as reported by the

Piksi RTK GPS is an order of magnitude more precise than the barometer, and drifts

significantly less over time. The 20 minute test corroborates these results, and demonstrates

We present the results of each 20-minute test in Figure 4.4 and summarize the results in

Table 4.4. These longer-term results further corroborated by the 5-minute test results. The

Piksi RTK GPS continues to provide two orders of magnitude better horizontal position

precision. For vertical position precision, the barometer drift over 20 minutes is even more

significant, deteriorating the conventional localization system’s performance. In comparison,

the Piksi GPS continues to provide centimeter precision.

4.3.2 Accuracy of Loop Closure Measurement

The loop closure test demonstrates a sensor’s ability to detect revisiting the same physical

position after moving away. We use this test to quantify the accuracy of the Piksi RTK

GPS relative to a known point, which establishes the baseline accuracy we can expect from

an autonomous landing. Furthermore, this test quantifies RTK GPS accuracy undergoing

movement, but without the antenna orientation changes or electromagnetic interference

from a quadrotor flight that might adversely impact performance.

Test Procedure We perform this test as follows: Set the quadrotor in fixed position with

a clear view of the sky, mark this fixed position, and power on. Wait until the Piksi GPS

achieves RTK lock, then arm quadrotor into flight mode without enabling motor controllers.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 49

metersmeters

m
et

er
s

m
et

er
s

Piksi u-blox CEP95

m
et

er
s

m
et

er
s

m
et

er
s

time (s)

Piksi (xy) u-blox (xy) Altitude

Figure 4.3: Each row visualizes the reported position of the quadrotor over 5 minutes for a
single test trial. The quadrotor itself was stationary on the ground. The conventional u-blox
GPS (orange) exhibits a wandering path over multiple meters. In comparison, Piksi (blue)
stays within 2 cm for 95% of samples. We also plot the circle within which 95% of samples
fall (green). Altitude precision of Piksi does not exhibit the drift of the barometer-aided
u-blox GPS.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 50

meters meters

m
et

er
s

m
et

er
s

time (s)

Piksi (xy) u-blox (xy) Altitude

Piksi u-blox CEP95

Figure 4.4: Each row visualizes the reported position of the quadrotor over 10-20 minutes
for a single test trial. The quadrotor itself was stationary on the ground. All tests exhibit
the same high-level qualities as the tests represented in Figure 4.3. The difference in altitude
precision between Piksi and the barometer-aided u-blox GPS is further apparent here, given
the additional time the barometer has to drift away from ground truth.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 51

Sensor Average (m) Std Dev (m)

RTK GPS 0.011 m 0.010 m

Conventional GPS 1.058 m 0.740 m

Table 4.5: Results for localization sensor accuracy during a loop-closure test. The RTK
GPS outperforms the conventional GPS by two orders of magnitude in accuracy during a
loop-closure test, demonstrating the sensor’s ability to detect revisiting the same physical
position after moving away. Both GPSes were moved through an arbitrary pattern in a
10 m2 space for 1 minute. Accuracy was measured over 5 trials.

Carefully carry the quadrotor in a arbitrary pattern around a 10 m2 space, taking care to

keep the quadrotor level and with an unobstructed view of the sky. After a minute, return

the quadrotor to the marked starting position. Then disarm and turn off quadrotor. Repeat

for 5 trials.

Test Result We present the results of the loop closure test in in Table 4.5. We find

that the RTK GPS returns to within about 1 cm, while the conventional GPS returns to

within about 1 m. These results demonstrate that, at least over short intervals, RTK GPS

provides both precise and accurate positioning. Thus, we can expect autonomous landing

to achieve up to centimeter precision. Furthermore, these results are accurate enough that

we can use the Piksi RTK GPS as a ground truth measurement for the quadrotor’s position

during flight.

4.3.3 Precision of Fixed Point Hovering

This test measures how precise a quadrotor can hold position under real world outdoor

conditions, when localization data is provided by a RTK GPS system. We investigate both

holding position for 5 minutes. In the previous section we established that the Piksi RTK

GPS provides centimeter-accurate positioning under these conditions, thus we use the Piksi

RTK GPS as ground truth data in measuring how precisely our quadrotor hovers at a fixed

position. The ArduCopter autopilot software provides a position hold ability in the form of

its “Loiter” flight mode. When Loiter mode is enabled, the autopilot software uses the EKF

state estimate and the control system to compensate for all external position and velocity

disturbances, attempting to hover the quadrotor at a fixed position with zero velocity.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 52

Accuracy Measurement Raw Piksi u-blox & Baro

North-East CEP95 (m) 0.3544 1.0474

Altitude Std. Dev. (m) 0.8047 0.7808

Table 4.6: Results for an end-to-end system test of quadrotor hover precision when using
RTK GPS. The quadrotor manages to hold position to within 35 cm of the commanded
horizontal position when using the Piksi GPS as a localization sensor. In this test, the Piksi
itself is used as ground truth. In comparison, the u-blox GPS only manages to track the
quadrotor to approximately 1 m accuracy. Altitude position hold managed to hold within
80 cm of the commanded vertical position. Position data reported over five 5-minute trials
during which the quadrotor attempted to hover at a fixed position.

Test Procedure We perform this test as follows: Set the quadrotor in a fixed position

with a clear view of the sky, and power on. Wait until the Piksi GPS achieves RTK lock,

arm the quadrotor, takeoff up to 5 m above ground, and enable loiter mode. Allow the

quadrotor to hold this position for 5 minutes. Manually land, disarm, and turn off the

quadrotor. Repeat 5 for trials.

Test Result We plot the trajectory of each flight relative to the first recorded latitude-

longitude and altitude point in Figure 4.5. We summarize the results in Table 4.6. The

quadrotor achieves an average position hold precision of 35cm, as measured by the Piksi

RTK GPS. Unlike our stationary tests from section 4.3.1, we see the quadrotor drifting

around tracing out a path clearly distinguished from the positioning noise. This effect

is most pronounced in the second and fourth trial. During these two trials we observed

more pronounced wind gusts, corresponding to the quadrotor’s position deviating from the

commanded position before the control system restored the quadrotor to its initial position.

The 3D Robotics Iris can achieve flight times of 12-15 minutes on a battery charge. We

also measured the precision of RTK GPS-guided position hold over an entire flight, using the

same test procedure as above. We performed 2 trials with each flight achieving 12 minutes

of hover. We present the trajectory of these longer trials in Figure 4.6, and summarize in

Table 4.7. We observe a similar precision as in the shorter 5-minute flights, suggesting that

30 cm is a reasonable steady state hover precision.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 53

Accuracy Measurement Raw Piksi u-blox & Baro

North-East CEP95 (m) 0.3015 0.804

Altitude Std. Dev. (m) 1.156 1.108

Table 4.7: Results for a longer end-to-end system test of quadrotor hover precision when us-
ing RTK GPS. During 20-minute-long hover tests, the quadrotor continues to hold position
within approximately 30 cm, suggesting that our 5-minute tests demonstrated a reasonable
steady state hover precision. Position data reported over two flights, each taking an full
battery charge (approximately 12 minutes).

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 54

metersmeters

m
et

er
s

m
et

er
s

Piksi u-blox CEP95

m
et

er
s

m
et

er
s

m
et

er
s

time (s)

Piksi (xy) u-blox (xy) Altitude

Figure 4.5: Each row visualizes a 5 minute flight during which the quadrotor attempted to
hover at a fixed position. Using the Piksi RTK GPS (blue), the control system manages to
keep the quadrotor within 35 cm of the setpoint 95% of the time. We also see wind gusts
periodically moving the quadrotor away from the setpoint, such as in row 4. The position
recorded by the conventional u-blox GPS is presented only for comparison.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 55

meters meters

m
et

er
s

m
et

er
s

time (s)

Piksi (xy) u-blox (xy) Altitude

Piksi u-blox CEP95

Figure 4.6: Each row visualizes the reported position of the quadrotor as it attempted to
hover at a fixed position for the full flight time of a single battery charge. Comparing these
graphs to the equivalent 5-minute over in Figure 4.5, we see similar behavior, suggesting
that our 5-minute tests represent a reasonable steady-state behavior of our quadrotor under
RTK GPS control.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 56

Number of trials (n) 10

Average distance from home 0.214 m

Maximum distance from home 0.379 m

Table 4.8: Results demonstrating the accuracy of autonomously landing a quadrotor at
the takeoff position, using the Piksi RTK GPS as a localization sensor. We manually flew
the quadrotor through a series of aggressive maneuvers, then commanded an autonomous
landing.

4.3.4 Accuracy of Autonomous Return and Landing

We now investigate the accuracy of autonomous landing when using the Piksi RTK GPS.

In this test, we manually fly the quadrotor through a series of aggressive movements for a

few minutes. We then command an autonomous landing, with the quadrotor automatically

flying back to the takeoff position. Thus, this test also gives some insight into the accuracy

of the Piksi GPS when undergoing real world flight characteristics.

Test Procedure We perform this test as follows: Set quadrotor in fixed position on a

fixed, clearly-marked position on the landing pad, and power on. Wait until the Piksi GPS

achieves RTK lock, then arm quadrotor into “Loiter” flight mode and take off. Using a

set of joysticks, fly the quadrotor by hand, taking care to reach the maximum pitch and

roll angles the control system supports in this flight mode. Switch the control system into

“Return-To-Land” mode. Allow the quadrotor to fly back to the takeoff position and land

autonomously. Wait 2 seconds, then disarm and turn off the quadrotor. Repeat this test a

total of 10 trials.

Test Result We present the results of this test in Table 4.8. Using RTK-GPS, the quadro-

tor lands an average within 0.21 m of the takeoff position. For context, the quadrotor’s

longest dimension is 0.55 m, thus we land in about a third of the quadrotor’s dimensions.

4.3.5 Performance: Time to First RTK Fix

GPS receivers must find a set of parameters that depend on the GPS constellation in view

before a position can be calculated. These parameters include the specific Doppler frequency

offset of each satellite and the orbital data that defines the exact position of each satellite,

amongst others. Estimating these parameters takes time, and must be re-estimated as

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 57

Number of trials (n) 26

Median TTFF (min:sec) 5:31

Average TTFF (min:sec) 8:17

TTFF Std. Deviation (min:sec) 5:56

Table 4.9: Results measuring the time from Piksi GPS boot until acquisition of first RTK
fix. Single-frequency RTK GPS systems suffer from relatively long fix times, a limitation
that can be addressed by moving to multi-band receivers with a corresponding increase in
cost and complexity.

satellites disappear from or come into view. Furthermore, an RTK GPS receiver must find

the difference in integer carrier wave cycles between the base station and rover receivers using

a set of techniques known as “integer ambiguity resolution”. L1-only RTK GPS systems

are particularly handicapped in resolving this integer ambiguity, since multi-frequency RTK

GPS receivers can take advantage of redundant information between different frequencies

to speed up resolution.

Test Result In this test, we report on the duration from initial GPS power-on, with no

initial data for any of the required GPS parameters, until the first RTK GPS position fix

is produced. We report this Time To First RTK Fix (TTFF) for all 26 trials presented

in previous sections. This includes the time it takes to acquire the GPS satellites and

resolve the integer ambiguity, with the majority of the acquisition time spent on the integer

ambiguity resolution algorithm. We plot the cumulative distribution function of the TTFF

measure over all trials in Figure 4.7. We find that the fastest 50% of our trials produce a

first RTK fix within 5 min and 31 s. We summarize these results in Table 4.9.

4.4 Discussion

Overall Accuracy is High First and foremost, we find that the Piksi GPS is an order

to two orders of magnitude more precise and accurate than a conventional barometer-aided

u-blox receiver across all our tests. Secondly, we find that a quadrotor using RTK-GPS

achieves decimeter position accuracy in both hover and autonomous landing—a control

accuracy that’s below the raw positioning ability of conventional GPS.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 58

0 5 10 15 20 25 30
Time (minutes)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Fr
eq

ue
nc

y
TTFF Cumulative Distribution

Figure 4.7: Cumulative distribution function of the Time To First RTK Fix measurements.
50% of trials fall within 5 minutes, 31 seconds, and 95% of trials fall within 19 minutes, 58
seconds.

Altitude Accuracy RTK GPS has drastic implications for localization in altitude. Cur-

rent quadrotors eschew conventional GPS for altitude measurements, since altitude accuracy

is even lower than several meter 2D position accuracy, due to geometry considerations [41].

Instead, current quadrotors rely on barometers to provide altitude hold. Although barom-

eters can sense centimeter-precise relative changes over timescales of a few seconds, barom-

eters are affected by changes in the surrounding atmosphere. These pressure changes cause

unpredictable drift, affecting both the absolute and long term accuracy of an altitude esti-

mates. The ArduCopter flight controller attempt to mitigate drift by blending accelerometer

data with barometer data. Although this approach helps, we still see drift of a meter or more

over 5 minutes. In comparison, RTK GPS provides a stable and low-noise altitude estimate.

Incorporating RTK GPS into a MAV is not without its challenges. The Piksi GPS

is a significantly more complex system, relying on tracking both the digital code of GPS

satellites, and the phase of the raw carrier wave. The result of these requirements are

that RTK GPS requires a higher signal strength and correspondingly higher quality GPS

constellation. Furthermore, RTK GPS is sensitive to multi-path propagation where the

GPS signal reflects off surfaces, changing phase in the process. Additionally, the MAV

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 59

must have a reliable telemetry radio connection to a base station GPS. We anticipated

these challenges, designed our system accordingly, and chose to only fly when the GPS

constellation provided at least 9 visible satellites. We now discuss how these additional

sensitivities manifest practically.

Reliability of Lock The Piksi GPS can lose RTK lock during flight, dropping back to

the same accuracy as a conventional GPS. During our testing, we observed Piksi dropping

out of fixed RTK mode in two of our tests once at 1:41 after takeoff in a 5 minute hover

test, and once at 10:31 after takeoff in a full battery rundown hover test.

Sensitivity to electromagnetic interference We found that electromagnetic noise was

an important consideration for achieving reliable and accurate positioning from both GPS

receivers, particularly the Piksi GPS. In fact, our initial integration failed to achieve RTK

lock. We mitigated electromagnetic interference by removing all non-essential RF equip-

ment, copper-shielding all cabling, and placing the GPS antennas on a copper-shielded

platform above the rest of the quadrotor’s electronics.

Long Time to First RTK Fix Arguably the largest limitation of single-frequency RTK

GPS receivers is their relatively long time to achieve a RTK lock. The Piksi GPS achieves

RTK lock 6 minutes or less over the fastest 50% of our tests. 95% of our tests locked in 19

minutes or less. Other single-frequency RTK GPS receivers report similar lock times [84].

When an RTK lock is lost, this process has to start from scratch. For many applications,

such as surveying a fixed point or flying in environments with a clear sky view, this limitation

is quite reasonable. That being said, in cases where the Piksi GPS is anticipated to lose

RTK lock during operation, such as moving through an area with limited sky view, single-

frequency RTK GPS might not be viable. One possible approach is mitigating these outages

by incorporating GPS satellite visibility into trajectory planning approaches. Another is

providing additional information from other sensors, such as the quadrotor’s Kalman filter,

to the integer ambiguity resolution algorithm. Alternatively, a multi-band RTK GPS can

be considered. These units can achieve RTK lock in seconds rather than minutes, but tend

to be significantly more expensive.

CHAPTER 4. EVALUATING RTK GPS FOR QUADROTOR LOCALIZATION 60

Additional Tests The tests in this section demonstrate the performance of RTK GPS in

two foundational scenarios—holding a fixed position and autonomously landing. Further-

more, these tests were designed to have an unambiguous ground truth without additional

hardware requirements. That being said, RTK GPS on quadrotors can benefit from further

analysis.

Quadrotors change position by changing orientation, which changes the orientation of

the GPS antenna. An analysis of the correspondence between signal strength and antenna

orientation can inform limits on control.

We only investigate the accuracy of position hold. A next step would be analyzing the

accuracy of trajectory tracking, especially as the speed of the quadrotor increases. Since the

results of this test depends strongly on the latency of GPS measurements, it would benefit

from an additional measurement of ground truth. One approach may be to visually track a

trajectory marked on the ground, or to use outside-in motion capture systems to track the

quadrotor during flight.

4.5 Conclusion

RTK GPS is currently the only onboard absolute positioning system that can provide cen-

timeter accuracy. In this section we have demonstrated the viability of using cheap, single-

frequency RTK GPS sensors on quadrotor aircraft. These sensors are currently growing in

popularity, as demonstrated by the release of several new RTK GPS sensors during the time

of this writing. In fact, we expect to see the adoption of RTK GPS as part of the sensor

suite for most autonomous robots. In the next chapter, we will make a case for exactly this

adoption. We will exploit the accuracy of RTK GPS to track people and control a quadro-

tor. This will allow us to autonomously capture compelling close-up cinematography of

subjects, and we will demonstrate the impact of RTK GPS on autonomous cinematography

in section 5.8.

Chapter 5

Guiding Quadrotors with

Composition Principles

This chapter presents “The Drone Cinematographer”, a tool to use quadrotors for film-

ing people doing everyday activities, such as playing sports, performing dance, or having a

conversation. The key insight powering this tool is encoding established composition princi-

ples and canonical shots into a camera controller, enabling users to use high-level elements

from the language of film to guide quadrotors. Furthermore, we show how to move the

quadrotor between these canonical shots in a way thats both visually pleasing, and keeps

the quadrotor from crashing into subjects. This tool builds on the RTK GPS localization

testbed from the previous chapter to accurately track both our quadrotor and our subjects,

enabling accurate and autonomous camera placement in large-scale outdoor environments.

The contents of this chapter was adapted from a 2016 arXiv paper co-authored by Niels

Joubert, Jane E, Dan B Goldman, Floraine Berthouzoz, Mike Roberts, James A. Landay

and Pat Hanrahan. All uses of “we”, “our”, and “us” in this chapter refer to all listed

authors.

5.1 Approach

Our idea is to create a semi-autonomous quadrotor camera system that positions itself

relative to the people in a scene according to rules of cinematography. This allows the

quadrotor to capture well-composed footage of people without needing another person to

61

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 62

Figure 5.1: In this chapter we present “The Drone Cinematographer”, an end-to-end system
for autonomously capturing well-composed footage of two subjects with a quadrotor in the
outdoors. Here we show a set of static shots captured by our system, covering a variety
of perspectives and distances. We demonstrate people using our system to film a range of
activities – pictured here: taking a selfie, playing catch, receiving a diploma, and performing
a dance routine.

manually fly the quadrotor. Flying a quadrotor is challenging and requires skill, and need-

ing a pilot requires an additional person. Our work builds on the capabilities of recent

commercial systems that have a follow-me mode. We seek to enable a more sophisticated

cinema-mode, where the quadrotor seeks to capture visually pleasing shots of the activity

being undertaken.

We focus on filming scenes with one or two people, where both people are fairly sta-

tionary. Under these simplifying assumptions, we demonstrate the efficacy of our idea for a

specific set of scenarios, such as two people taking a “selfie”, playing catch, or performing

a hip-hop dance routine.

We draw upon cinematographic practice, and past work in computer graphics that adds

visual composition principles to virtual camera controllers. Cinematographers have devised

a small set of canonical shot types (e.g., apex, internal, and external), and computer graphics

researchers have developed algorithms for placing the camera to generate these shot types.

The result is that if we know the locations of the subjects, we can compose visually pleasing

footage by correctly placing the camera.

However, there are several challenges to using visual composition principles and canon-

ical shots with quadrotors, all related to the fact that the quadrotor is a physical device

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 63

moving in the real world: A quadrotor must obey the laws of physics, which constrain how

it can fly. Moreover, the quadrotor must know where the subjects are to be able to film

them. Most importantly, the quadrotor must not fly into people and cause them harm.

We overcome these challenges through accurate tracking and a unique trajectory plan-

ning algorithm. We track the position of both the quadrotor and two people using the

Real Time Kinematic (RTK) GPS sensor investigated in Chapter 4. RTK GPS allows us to

estimate positions to within 2 cm accuracy, which is much better than the roughly 2 m ac-

curacy of conventional GPS. Given the sizes and distances involved, this increased accuracy

is essential to place the subjects correctly within a frame.

Our trajectory planning algorithm builds upon previous work in designing and optimiz-

ing quadrotor camera trajectories. Like previous work, we require that the trajectory flown

by the quadrotor obey the laws of physics. This requires that the path be C4 continuous,

and that the movement along the path not exceed a maximum velocity. The main new

technical contribution in this chapter is a method to move between camera shots safely;

that is, we guarantee that the position of the quadrotor relative to a subject is greater than

a minimal distance. We enforce this no-fly “safety sphere” while maintaining a pleasing

composition of the image.

We present the first end-to-end system that leverages composition principles and canon-

ical shots to guide autonomous quadrotor cameras filming people in the real world.

5.2 Design Goals and Challenges

We design our system to achieve the following visual composition goals:

Employ Canonical Shots The literature of cinematography offers numerous high-level

composition principles that guide the framing of a set of commonly used shots [9, 36,

77]. These shots specify where subjects lie within the frame, and implicitly define the

relative placement of the camera with respect to the subjects. Following this approach, we

implement a set of canonical static shots. These shots place the camera at a fixed pose,

allowing subjects some freedom to move in the frame. We also take care to respect the

compositional principle of the rule of thirds: the focal point of a shot is placed at the

intersection of horizontal and vertical lines splitting the screen into thirds.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 64

Maintain Compositional Continuity Moving shots and transitions should be pre-

planned such that start and end frames are compositionally balanced, and intermediate

framings should vary smoothly, with subjects moving in roughly straight lines from one

camera movement to the next. We wish to avoid indecisive and jerky motions: Movement

that is too fast can be hard on viewers’ eyes, and can detract from the content of the frames.

In addition, we seek to preserve the line of action between the two subjects: Throughout a

shot sequence, the camera stays on the same side of this line to encourage visual continuity.

The rationale for this principle is that if the camera switches sides, the subjects will switch

left and right sides in the frame, which is disorienting for the viewer.

To achieve our stated design goals, our system must overcome the following technical

challenges:

Construct and Maintain a Virtual Representation of the Scene Our virtual rep-

resentation of the scene must be accurate enough to plan shots with the intended visual

composition. This implies that the system must accurately track the pose of both sub-

jects and camera. Our system supports capturing shots containing one or both people, and

therefore our tracking system cannot assume both subjects are always visible to the primary

camera.

Plan Safe Camera Locations Based on the virtual scene, our system will plan locations

for the camera in the physical world. In consideration of both safety and personal space, we

introduce a safety constraint. This constraint states that we only choose camera positions

outside of exclusion zones where the camera must not be placed. We call these zones,

centered on each subject, safety spheres, represented as a minimum distance constraint in

3D space.

Plan Visually Pleasing Transitions In contrast to a virtual camera, a physical camera

cannot be immediately placed at a new location: It has to transition in space between

poses. We implement transitions between shot locations, planned such that they attempt to

maintain pleasing composition throughout. During these transitions, the quadrotor camera

must also maintain the safety minimum distance constraint to both subjects.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 65

Place the Camera According to Plan Finally, the virtual plan of static shot locations

and transitions must be executed by a physical quadrotor control system in real time.

Quadrotor
CameraTracking

Subsystem

Shot
Generation

Transition
Planner

Trajectory
Follower

system
state

camera
pose

feasible
trajectory

control
commands

shot type

Figure 5.2: Major technical components of our real-time autonomous cinematography sys-
tem, the Drone Cinematographer. Our tracking subsystem estimates poses of subjects and
the quadrotor camera in the real world. Whenever a new shot type is provided by a user
(shown in red), our system generates a camera pose that satisfies visual composition prin-
ciples and physical placement constraints. To move the camera from its current pose to
this new camera pose, a feasible, safe, and visually pleasing transition is planned. Finally, a
sequence of quadrotor and gimbal commands control the quadrotor camera autonomously.

5.3 Technical Overview

We provide an overview of the major technical components of the Drone Cinematographer

system in Figure 5.2. At the core of our system is a shot generator that produces well-

composed static shots of two subjects, described in Section 5.5. We build this shot generator

based on a set of canonical shot types and visual composition principles. This shot generator

enables users to specify a desired camera pose at a high level, using terminology from the

cinematography literature. Given a canonical shot type, our shot generator produces a

static camera pose consisting of a look-from and look-at point, taking care to ensure the

resulting pose is safe with respect to both subjects. Our system then places and holds a

camera at this pose, recording video.

We prototype a simple user interface driven by a visualization of the virtual scene

representation and a simulation of our robotic camera. Our interface displays a 3D rendering

of the current virtual representation of the scene from the perspective of the quadrotor

camera. A user can select any shot type, and virtually see the resulting shot. The user can

also issue shot types to the real quadrotor camera. Our system will then place the virtual

camera at a new static camera pose corresponding to the selected shot type.

To place the camera at a new static camera pose, our system creates a transition from

the current camera pose to this new pose. This transition needs to take into account the

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 66

visual contents of video recorded during a transition, respect the safety of subjects, and

adhere to the capabilities of quadrotors. With this in mind, we design an algorithm for

synthesizing quadrotor camera trajectories between two static camera poses (Section 5.6).

At a high level, our approach is to optimize a blend of easy-to-generate basis trajectories by

solving a constrained non-convex optimization problem. Using this algorithm, we produce

a look-at and look-from trajectory for our quadrotor camera.

Our shot generator produces a camera pose relative to subjects, and thus needs to

know the pose of each subject. Our system tracks subjects by having them wear a helmet

containing the high-accuracy RTK GPS from Chapter 4, and inertial measurement unit

(IMU) sensors. We use the same tracking system to accurately localize our quadrotor

camera.

Lastly, our system captures shots by issuing control commands to a quadrotor camera.

These control commands takes the form of look-from and look-at setpoints driving a feed-

back controller running on a real-world quadrotor. During a static shot, our system holds

a quadrotor camera at a fixed look-from and look-at setpoint until the user commands a

new shot. During a transition to a new shot, our system sends a stream of look-from and

look-at samples along the transition trajectory, moving the quadrotor camera.

Throughout our system, we consider various approaches to keep our subjects safe in the

presence of a quadrotor aircraft. When our system places static shots, it keeps the quadrotor

a safe distance from our subjects. While a camera is at a static camera pose, subjects are

free to move around and the camera will not change its position. When our system plans

a transition, it ensures the resulting trajectory stays a safe distance from subjects, but

assumes the subjects will not leave their safety spheres during a transition. Overall, our

system does not prevent a subject from intentionally colliding with the quadrotor. We

expect advances in dynamic obstacle avoidance to address this problem. For the purposes

of this work, we feel it is reasonable to assume a benevolent subject that is willing to remain

fairly stationary within the bounds of the safety sphere.

5.4 Modeling Subjects and Cameras

In this section, we introduce the subject and quadrotor camera models used in our system,

shown in Figure 5.3.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 67

Figure 5.3: Overview of our camera and subject model. Each subject has a position and
a gaze vector, ~P and ~G. We model our camera as a look-from point ~Lf , a look-at point
~La, and a field of view α. We also introduce angles θ and φ to describe angles between the
direction that the camera is pointed and the line of action, and d to indicate the distance
between the look-at and look-from points.

5.4.1 Subject Model

Each subject is modeled as a position ~Pi and gaze vector ~Gi that represents the subject’s

head position and orientation. Our tracking system, presented in Section 4, estimates these

positions and orientations. We calibrate our tracking system so that the position of the

subject corresponds to the center of their head at eye level. Each subject is further described

by their height, and by a minimum distance value dmin defining the subject’s safety sphere.

Our system will not place the quadrotor camera closer than dmin to a subject.

5.4.2 Quadrotor Camera Model

We use the joint quadrotor and camera model introduced in Chapter 3, which models

a camera on a gimbal attached to a quadrotor aircraft. This model has two important

implications for us. First, this model enables our system to specify the behavior of a

quadrotor camera using look-from and look-at world space points (Lf and La in Figure 5.3).

We fix the up vector to be vertical.

To model moving quadrotors and subjects, we allow the look-at and look-from points to

follow a trajectory. To respect the dynamics and physical limits of the quadrotor, these look-

at and look-from trajectories must be C4 continuous, and the velocity along the look-from

trajectory must be less than the maximum speed at which the quadrotor can fly.

Finally, our physical camera model has a fixed field of view αmax.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 68

5.5 Generating Static Shots

1/3 2/3

1/3

2/3

Input Subject(s): A, B
Angle θ: 90

Shot Distance: Long

Input Subject(s): A, B
Angle θ: 90

Shot Distance: Medium

Input Subject(s): B
Angle θ: 30 or 150

Shot Distance: Medium

Input Subject(s): A
Angle θ: gaze ± 70 ∪ [0, 180]

Shot Distance: Close

A

B

0°

180°

θ = 90°

Sp
at

ia
l

Co
m

po
sit

io
n

Vi
su

al
Co

m
po

sit
io

n
Sa

fe
 V

isu
al

Co
m

po
sit

io
n

Apex Close Apex Internal External

Figure 5.4: This table shows the four main types of shots we implemented in our system.
The top row shows the spatial layout of each shot from a bird’s eye view. The blue camera
is the goal virtual camera position, and the black quadrotor shows the same shot from a safe
distance. The second row shows the intended visual composition, applying the rule of thirds.
In the third row we show the same shot after applying our minimum distance constraint.
We move the camera to a safe distance by decreasing the field of view, while maintaining
the size of the subjects by cropping the frame. The gaze direction of the primary subject
is measured relative to the line of action. Finally, we list the parameters that define each
shot. In this illustration, the pitch angle φ = 0.

Our system is designed to capture canonical shots which adhere to principles gleaned

from the cinematography literature. Here we describe the set of shots we selected, and how

they are implemented in our system.

5.5.1 Defining Shots

The inputs to the shot selection system are the positions and gaze directions of the two

subjects, and the desired type of shot. The outputs of the shot selection system are the

look-from and look-at points, and the field of view of the camera.

A shot type is defined by the input subject(s), shot distance, and orientation angles.

Here we describe these parameters and how they impact the outputs for a given shot.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 69

If the shot has a single input subject (e.g. the internal and external shots described

below), we place our camera so that this primary input subject is at a screen space position

that follows the compositional principle of the rule of thirds. More specifically, the eyes

of the subject are placed at the intersection of horizontal and vertical lines splitting the

screen into thirds. Subjects facing to screen right lie along the left vertical one-third line,

and subjects facing to screen left lie along the right vertical one-third line. If a shot has

multiple input subjects (e.g. an apex shot), we frame both subjects by placing the camera so

the average position of the eyes of the two subjects lies on the center of the upper horizontal

two-thirds line.

We next set the distance of the camera to the primary subject, or, in the case of two

subjects, to the average position. We specify shot distances qualitatively using well-defined

cinematographic conventions: close, medium, or long [9]. These distances are defined by

the portion of a subject’s body that should appear in frame—specifically, we represent these

as the approximate number of heads below the horizon line (close is 2.5, medium is 4, and

long is 7.5). We geometrically calculate an absolute distance d based on shot distance and

the subject(s)’ average height.

The orientation angle θ defines the yaw of the camera relative to the line of action.

Cameras are placed on the same side of the line of action. The system initially chooses

the side that sees more of the subject(s)’ faces, which can be determined from the gaze

directions, and keeps the camera on this side. We also have an angle φ that defines the

pitch of the camera. This is usually set to 0 degrees, generating shots with a straight-on

view of subjects.

The look-from and look-at point for a shot is calculated from the screen space position of

the subjects, the distance of the camera, and the orientation angle. An approximate look-at

point is placed on the line of action, and an approximate look-from point is placed relative

to the approximate look-at point using θ, φ, and d. This places the camera at the correct

orientation and distance from the subject, but does not yet guarantee the subject appears

in the correct screen space position. We shift the approximate look-from and look-at point

to move the subjects to the correct screen space position in the frame.

The distance of the camera to the subject depends on the field of view of the camera and

the desired size of the subject in the frame. Unfortunately, this may cause the camera to

be placed inside the safety spheres surrounding the subjects. We fix this hazard by moving

the camera further away until it is outside the safety spheres. Moving the camera further

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 70

away causes the subject size to shrink, and the composition to change. To compensate for

this change, we calculate a crop, α ≤ αmax, that maintains the visual composition of the

shot. It is possible for the crop to be so extreme that the resolution loss makes the resulting

footage practically unusable even though subjects are correctly framed. Fortunately, our

system can use the same approach for quadrotors with optical zoom lenses to change the

view of view without incurring resolution loss.

5.5.2 Types of Canonical Shots

We chose to implement four main shots in our system: apex, close apex, internal, and

external. These shots are adapted from the camera modules in He et al. [36]. Figure 5.4

shows these four shot types, the relative spatial placement of the camera and subjects, as

well as the resulting visual compositions.

• Apex A long shot of both subjects, vertically centering characters in the frame.

The subjects’ average eye level is placed centered horizontally at the two-thirds line

(Figure 5.4 (a)).

• Close apex A medium shot of both subjects, framed similarly to the Apex shot

(Figure 5.4 (b)).

• Internal A close shot of a single input subject, oriented relative to gaze to guarantee

a semi-frontal view of the primary subject. The subject is placed on one of the vertical

thirds lines such that the majority of empty screen space is in front of their (Figure 5.4

(c)).

• External A medium shot of a single input subject, looking over the shoulder of

the other subject. If the primary subject is on the left side, they are placed at the

one-thirds line with the other subject in the right third of the frame, and vice versa

(Figure 5.4 (d)).

• Apex From Above, External From Above We also implemented alternate ver-

sions of the Apex and External shots, but placed above subjects to mimic canonical

top-down shots [77]. These are implemented with the same parameters as the shot

types described above, but with the pitch angle, φ, set to place the camera looking

down from above the subjects.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 71

5.6 Transitioning Between Shots

dmin

dA(0)

dA(1)
dB(0)

dB(1)

~vA(0) ~vA(1)

~vB(0)
~vB(1)

~PA ~PB

~C0
~C1

Figure 5.5: Here we show the terms we use to construct basis vector paths. We assume
we are given two subject positions ~PA, ~PB and an initial and final camera position ~C0, ~C1.
In blue, we show the terms that generate a basis path for Subject A. We extract an initial
and final vantage vector ~vA(0), ~vA(1), and an initial and final distance dA(0), dA(1). We
linearly interpolate from dA(0) to dA(1), and spherical linearly interpolate from ~vA(0) to
~vA(1). Scaling the interpolated vantage vector by the interpolated distance as we interpolate
produces a basis path. In orange, we show the same quantities relative to Subject B.

In this section, we consider the problem of moving a quadrotor camera from one static

shot to another. Specifically, we want to find a quadrotor camera trajectory that maintains

a visually-pleasing composition, respects the dynamics and physical limits of our hardware,

and ensures safety of our subjects. Our main insight is to avoid solving a general trajectory

optimization problem in the full state space of the quadrotor. Instead, we blend between

two easy-to-generate and visually-pleasing basis trajectories. This approach is more com-

putationally efficient than solving a general trajectory optimization problem, and produces

safe and visually pleasing trajectories.

We summarize our method for transitioning between static shots as follows. First, we

generate a pair of basis paths by adapting a composition-aware interpolation technique

introduced by Lino and Christie [54]. These basis paths produce visually pleasing results,

but might get too close to the subjects. We produce a final path that respects our minimum

distance constraints, by optimizing a blending function that blends between our basis paths.

We then apply an easing curve to our final path, producing a final look-from trajectory. We

generate a look-at path by linearly interpolating look-at points in world space. We apply

the same easing curve (as was applied to our look-from path) to our look-at path to produce

a final look-at trajectory.

We assume we are given as input a start and end camera position ~C0 and ~C1, as well as

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 72

~PA ~PB~C0 ~C1

~σA(u)

~σB(u)

Basis Camera Paths

~PA ~PB~C0 ~C1

~σ(u)

Final Camera Path

(a) (b)

Figure 5.6: Blending between quadrotor camera trajectories. (a) A top-down view of our
basis camera paths, generated using spherical interpolation around Subject A (blue path)
and Subject B (orange path), respectively. The green circles represent the safety sphere of
each subject. Note that the orange basis path violates the minimum distance constraint
(green circle) around Subject A. (c) We find a final camera path by blending these two basis
paths, enforcing the constraint that the final path is outside both unsafe regions.

start and end look-at points. We assume the start and end positions of the look-at point

do not change during the transition. We also assume the start and end camera positions

are safe – that is, the distance from the start and end camera position to each subject is

greater than dmin.

5.6.1 Generating Basis Paths

We assume that the paths we consider in this section are parameterized by a scalar path

parameter u. We define two basis paths, one for each subject. We define the camera-to-

subject distance at each point along each basis path as di(u), where i is an index that refers

to each subject. We set di(u) to be the linear interpolation between the camera-to-subject

distances of our initial and final camera positions ~C0 and ~C1. Likewise, we define the

vantage-vector at each point along the basis path as ~vi(u). We set ~vi(u) to be the spherical

linear interpolation of the normalized camera-to-subject vantage vectors corresponding to

our initial and final camera positions. We define our two basis paths ~σi(u) as follows. This

construction is shown in Figure 5.5.

~σi(u) = ~Pi + di(u) · ~vi(u) for u ∈ [0, 1], i = {A,B} (5.1)

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 73

Our basis paths have the following useful properties:

• ~σi(u) is C∞ continuous with respect to u. This is because spherical linear interpo-

lation between two vectors and linear interpolation between two points are both C∞

continuous interpolation schemes. This property is useful, since trajectories must be

at least C4 continuous with respect to time in order to satisfy the quadrotor dynamics.

• It is guaranteed that ~σA(u) will never get too close to subject A, and ~σB(u) will never

get too close to subject B. This is because our start and end camera positions satisfy

the minimum distance constraint, and we linearly interpolate distance. This property

is useful, because it suggests that we can generate a path that never gets too close to

either subject by blending between our basis paths.

5.6.2 Optimal Blending of Basis Paths

In the previous section we generated two paths, one relative to each subject. Previous work

averages these two paths together to produce a final path. Unfortunately, the resulting path

can violate our minimum distance constraint (see Figure 6).

We introduce a blend function w(u) that blends the two basis paths into a final path

~σ(u) as follows,

~σ(u) = w(u) · ~σA(u) + (1− w(u)) · ~σB(u) (5.2)

We now use constrained optimization to find a good blend function. We seek a blend

between the two basis paths (1) that is as close as possible to the two input paths, and

(2) obeys the minimum distance constraint. During this optimization procedure, we also

enforce C4 continuity (and hence, C4 continuity of our final path), and we optimize the

overall smoothness of our blend.

Enforcing C4 Continuity In order to enforce C4 continuity, we discretize our blend

function w(u) into a sequence of n sample points wk where k = 1 . . . n (thus u = k
n).

Following the approach outlined by Roberts and Hanrahan [76], let wk be the value and

the first four derivatives of w(u) at each sample point k. Let vk be the 5th derivative of

w(u) at sample point k. Let du be the delta between successive sample points. We enforce

C4 continuity of our blend as follows,

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 74

wk+1 = wk + (Mwk + Nvk)du

where M =

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

N =

0

0

0

0

1

(5.3)

subject to vmin ≤ vk ≤ vmax

Similarly to Roberts and Hanrahan [76], we introduce vmin and vmax to control how

much d4w
du4

is allowed to vary between sample points while still considered continuous. In

our implementation, we heuristically set these values inversely proportional to the number

of samples n of our blend.

Optimization Problem Stating our optimization problem formally, let W be the con-

catenated vector of decision variables wk and vk across all sample points k = 1, . . . , n. Let

λ be a parameter that trades off between smoothness and our preference for giving equal

consideration to each basis trajectory. We find the optimal set of blend function values and

derivatives as follows,

minimize
W

n∑
k=0

(
(wk −

1

2
)2du + λ(

d4w

du4
)2du

)
subject to wk+1 = wk + (Mwk + Nvk)du

0 ≤ wk ≤ 1

vmin ≤ vk ≤ vmax

‖~σk − ~P0‖ ≥ dmin

‖~σk − ~P1‖ ≥ dmin

(5.4)

where ~σk = wk · ~σA(
k

n
) + (1− wk) · ~σB(

k

n
)

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 75

The problem in (5.4) is nonconvex, and is therefore sensitive to initialization. We

initialize our solver with a default initial blend that averages the input trajectories exactly,

with weights set to 1
2 .

Performance In our implementation, we solve the problem in (5.4) using the commer-

cially available non-convex solver SNOPT [33]. We rely on SNOPT to numerically calculate

the Jacobian matrices of our optimization problem. In all our experiments, we discretize

w at a moderate resolution of n = 50 samples. We experimentally find that we can solve

this optimization problem in under 500ms on a 2.8 GHz Intel Core i7 processor for all our

shots.

5.6.3 Generating the Final Trajectory

Our final path is parameterized in terms of the path parameter u, and not time. We apply

an easing curve to our path to generate a smooth final trajectory, using the method shown

in Chapter 3.

So far we have only computed the look-from trajectory. We still need to generate the

look-at and field of view trajectory. To do this, we linearly interpolate between the two

start and end look-at points and field of view values, and then apply the same easing curve.

Once we have a final camera trajectory, we check it against our quadrotor model for

violations of physical limits using our open-source Flashlight library [75]. If any exist, we

linearly time-stretch the easing curve until no constraints are violated. Practically speaking,

we conservatively set the total time of our transitions to avoid violating physical constraints.

We have found that our default easing curve rarely produces trajectories that exceed these

limits.

5.7 Tracking and Control Platform

Our system has to maintain a virtual representation of the scene to plan shots, and place a

quadrotor camera accurately according to this plan. Here, we present a hardware platform

that achieves these goals (Figure 5.7). We place active trackers containing the RTK GPS

from Chapter 4 and an IMU in the shape of the Pixhawk flight controller hardware on

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 76

(a) (b) (c)

Figure 5.7: Overview of the major physical components of our hardware platform. A subject
(a) wears a position and orientation tracker on a helmet. GPS corrections are provided from
a base station (b). The quadrotor (c) is equipped with an orientable camera and similar
tracking hardware.

each subject and the quadrotor. We use the IMU to estimate the orientation of the tracker.

Specifically, both the IMU and GPS output is fed into a Kalman filter to estimate the current

position and orientation state. This state is communicated to a central computer using a low

latency network. The central computer executes our shot planning algorithm, producing a

quadrotor trajectory. The trajectory is turned into a sequence of control commands, sent

to the quadrotor camera using the same wireless network.

We use off-the-shelf long range radios to communicate between the various components

of our platform. Specifically, we use the Ubiquiti Bullet M5 radio. This radio provides sub

5 ms communication latency over a range of several hundred meters, enabling our system

to maintain an up-to-date virtual representation of the scene.

The quadrotor we use in this chapter is a modified 3DR Solo, carrying a gimbal-mounted

GoPro Hero 4 Black camera, and the RTK GPS. This quadrotor uses the APM autopilot

software [8], which includes an onboard Kalman filter for position estimation. We extend

and tune the Kalman filter to accept position estimates from the RTK GPS. To fly a

quadrotor camera according to a look-from and look-at trajectory, we use the same trajec-

tory follower as in Chapter 3 to drive the onboard control system. High-accuracy position

estimates from the RTK GPS aid the control system in placing the quadrotor accurately.

In our results, we present experimental evidence to support the efficacy of this platform for

autonomously capturing cinematography.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 77

Figure 5.8: Here we show a sequence of static shots captured by our system during a single
shoot of two subjects playing catch. Top left to bottom right: apex from above, external of
subject in red, external from above of subject in red, internal of subject in gray, external of
subject in gray, apex. Notice the line of action is maintained throughout these shots: The
person in red is always on the left, and the person in gray remains on the right.

Figure 5.9: Here we show a sequence of frames from a transition captured by our system
while filming a choreographed dance routine. This transition goes from an external shot of
the right character to an external shot of the left character.

5.8 Results

In order to test our system, we captured footage using our system of a range of scenarios

including taking a selfie, playing catch, and performing a choreographed dance routine. We

show several shots produced by our system in Figure 5.1 and Figure 5.8.

Well-composed Static Shots We present examples of several static shots generated

using our system in Figure 5.8. These shots are captured from a single flight, and feature

two subjects playing catch. Each of these shots respect the rule of thirds and our safety

constraints, and are cropped to match the intended compositions. Furthermore, our system

maintains the line of action over successive shots. As a consequence, in each of these shots,

the relative left-right positioning of subjects in frame is consistent.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 78

Safe and Visually Pleasing Transitions Our transition planner is able to produce

transitions that are both safe and visually pleasing. Figure 5.9 shows a set of still frames

from a transition captured using our system. Both subjects change smoothly in size, and

move reasonably in screen space through the transition.

Capturing Scripted Scenarios We also used our system to capture a fully scripted

scenario. We staged a simulated graduation ceremony, and captured multiple takes of the

entire performance, repositioning the camera between takes. Before a take, we pose our

actors for a specific visual framing and autonomously place the camera. An editor used this

footage to create a short narrative, cutting between different angles as the action smoothly

unfolds. This use case demonstrates how our system can be used as part of the traditional

cinematography process.

Imposing Safety Constraints Our decision to prioritize safety causes some failure cases

where we do not manage to frame a subject accurately. These failure cases occur when we

attempt to capture a close shot from far away. These situations are particularly challenging,

since small errors in orientation can significantly impact the visual composition. Internal

shots are particularly sensitive to this effect. If the primary subject is looking at another

subject, the internal has to be placed behind the other subject to capture the face of the

primary subject. Figure 5.10 shows an example of this occurrence. The internal shot is

cropped significantly, and the resulting footage does not manage to respect the rule of

thirds.

Screen-Space Impact of Accurate Tracking and Control We investigate the screen

space impact of using our RTK GPS-based tracking system over conventional GPS for

Figure 5.10: A failure case, where the suggested crop does not match the target framing.
α = 14.9 while αmax = 50.

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 79

0 1 2 3 4 5 6
error in meters

0
2
4
6
8

10
12
14

fre
qu

en
cy

 (%
)

Position Error

0.0 0.2 0.4 0.6 0.8 1.0 1.2
error as a fraction of screen width

0
2
4
6
8

10
12
14

fre
qu

en
cy

 (%
)

Screen Space Error

Figure 5.11: World space and screen space error incurred when using conventional GPS to
track subjects and plan shots. We track subjects through an 8 minute session using both
RTK and conventional GPS. We use RTK GPS as ground truth, and conventional GPS to
plan shots. Conventional GPS produced world space error of several meters, potentially
violating our safety constraint. We automatically planned a virtual camera shot every
4 seconds, and report the resulting screen space error. Using conventional GPS incurs
unacceptable screen space error, potentially placing the subject halfway across the frame
or more. Furthermore, world space error is significant enough that the quadrotor can easily
violate the safety sphere around our subjects.

shot-planning. We fed our system with position data from both a conventional and RTK

GPS. We use RTK GPS as our ground truth measurement, and automatically plan each

shot in our system using position information from both sources. We repeatedly planned

a virtual camera shot every 4 seconds, over data recorded during all our real-world user

trials. For this experiment, we assume we can place the virtual quadrotor at exactly the

desired position, and render a virtual preview of the scene as it would appear given the

ground-truth data. Thus, we can render an image that realistically places people at the

correct location they would take in the frame if their position was measured with the

conventional GPS. For every shot, we measure a world-space and a screen-space error: (1)

We measure the error in screen space between the planned position of each subject and the

actual position of each subject. (2) We measure the world-space error between the desired

quadrotor placement when fed conventional versus RTK GPS data. We report the results of

this test in Figure 5.11. On average, subjects appear approximately a third of screen-width

away from their desired position. This is a significant error, given that a subject would, on

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 80

average, fall on the wrong rule-of-thirds line when using conventional GPS. Furthermore,

the desired quadrotor position, even if we were to be able to place it perfectly, would fall

on average approximately two meters away from its correct position. This amount of error

makes it likely for the quadrotor to violate our safety spheres. Given the significant screen

space and world space error incurred when using conventional GPS to capture our set of

shots, we feel validated our design choice to use a higher accuracy approach.

5.9 Discussion

In our work, we consider the placement and size of subjects in screen space. However, we

plan paths in world space, only indirectly controlling the screen space behavior of subjects.

An exciting follow-up to our transition planner is an algorithm for directly controlling

screen space behavior of subjects, solving for the equivalent camera path. In fact, since the

publication of this work, a follow-up paper by Naegeli et al. [65] which investigates this

problem has appeared!

Our tracking system in its current form is fairly bulky and intrusive. Our trackers are

a prototype, and the assembly can easily be miniaturized. RTK GPS is also under active

development, with modules becoming more robust and affordable, and base stations being

offered as a cloud service. We expect that, in the near future, we can build this technology

into wearable.

We chose a design of our tracking system that operates independently of the camera.

An exciting path forward is to additionally control the quadrotor by visually tracking the

primary subject whenever they are in frame.

In this instantiation of the Drone Cinematographer, we made a set of simplifying as-

sumptions for the scenarios we considered. We limited ourselves to up to two subjects, and

assumed the subject stays within a fixed safety sphere during filming. The next step for a

more general Drone Cinematographer is to lift both these restrictions.

Currently our system does not attempt to aggressively follow or respond to people’s

movement. We are interested in extending our system to capture moving versions of our

static shots while maintaining the safety of our subjects. Given the tight framing of our

shots, we imagine that doing so is a nontrivial problem, potentially addressed using con-

cepts from model predictive control [81].

CHAPTER 5. GUIDING QUADROTORS WITH COMPOSITION PRINCIPLES 81

In this chapter we considered the composition of shots. There are also many other factors

that play into producing aesthetic footage, such as lighting and color. Broadly speaking,

we think that incorporating aesthetic considerations into quadrotor camera control can

significantly alter the way people produce video.

Chapter 6

Conclusion

In this thesis, we described new tools for creating cinematography with quadrotors. Whereas

current approaches present pilot-first interfaces rooted in aviation and mission planning,

our approach presents cinematography-first interfaces grounded in 3D animation and visual

composition principles. By reifying concepts from virtual and traditional filmmaking into

tools, we enabled users to specify their cinematic intent directly, while we automated flying

the quadrotor camera.

In Chapter 3, we introduced Horus, a tool for designing quadrotor camera shots. Horus

is built on a set of design principles informed by 3D animation and exploratory studies of

professional quadrotor cinematographers. Specifically, Horus is built around four concepts:

(1) designing shots visually using keyframes; (2) preview shows virtually; (3) precisely

specify shot timing using easing curves; and (4) visually receive feedback on the feasibility

of a shot. Using Horus, both novice and expert users designed compelling shots that would

be challenging to create otherwise. We then autonomously captured these shots on a real

quadrotor camera platform.

Users of Horus were limited to preplanning shots of large static scenes, where the meter-

plus positioning accuracy of standard GPS and the lack of object tracking did not prevent us

from faithfully capturing shots. In Chapter 4 we addressed these limitations by examining

RTK GPS—a technique that provides centimeter-accurate absolute positioning. Specifi-

cally, we quantified the performance of the first consumer-grade single-frequency RTK GPS

as an accurate sensor for quadrotor localization. We first demonstrated centimeter-precise

and accurate 3D position measurement using the raw sensor. We then integrated the RTK

82

CHAPTER 6. CONCLUSION 83

GPS receiver into a quadrotor and found that RTK GPS provides decimeter accurate po-

sition control. These results led us to conclude that cheap, consumer-grade RTK GPS

sensors are a viable approach for accurate object tracking and quadrotor localization in

large outdoor environments.

Armed with this sensor, we tackled the problem of filming people using quadrotors. In

Chapter 5, we presented the Drone Cinematographer. This tool is built on well-known com-

position principles, enabling users to capture footage of people autonomously with a quadro-

tor. We encoded a set of canonical shots from cinematography literature, and adapted them

to respect safety considerations imposed by quadrotors. We presented a novel transition

planner that produces visually pleasing transitions, while also satisfying our safety con-

straints and quadrotor dynamics. Our implementation is built on a tracking system that

uses RTK GPS to localize the positions of both subjects and the quadrotor camera with

centimeter accuracy. Using the Drone Cinematographer, we successfully captured multiple

scenarios with reasonable accuracy using a real quadrotor camera.

6.1 Impact

Several exciting new developments have taken place since we started publishing the work in

this thesis. Researchers at ETH Zurich have presented two systems that also provide new

interfaces and algorithms for quadrotor cameras [65, 32]. Researchers at Stanford recently

extended Horus to generate feasible variants of infeasible trajectories automatically [76].

Coaguila et al. [21] demonstrated a method to capture well-composed video of a single

subject using a quadrotor camera by visually tracking their face.

The consumer industry is also starting to investigate tools that provide cinematography-

first interfaces. In fact, the largest consumer quadrotor manufacturer, DJI, now provide

autonomous “follow-me” and “active track” features that visually track and attempt to

keep a subject in view [27]. These methods, although still in infancy, are enabling operators

to focus on cinematography rather that manually piloting a quadrotor.

CHAPTER 6. CONCLUSION 84

6.2 Final Remarks

The tools presented in this thesis are the first steps towards an exciting new field - that of

autonomous flying robots enabling compelling content creation. We fundamentally view to-

day’s quadrotors as computational cameras, enabling algorithmic and interaction advances

to support creativity. For example, quadrotor cameras might soon be able to autonomously

film a person skiing down a mountain, intelligently avoiding obstacles and framing the sub-

ject as they move through complex environments. We see a future where robotic systems

intelligently balance human interfaces and aesthetic and technical knowledge, enabling you

to capture your stories while you remain immersed in your experience.

Appendix A

Quadrotor Camera Model Details

A.1 Deriving the Quadrotor Camera Manipulator Matrices

In this section, we derive the manipulator matrices for our quadrotor camera model. At a

high level, our strategy will be to relate our quadrotor camera’s degrees of freedom to our

control inputs.

In the derivation that follows, we assume that our quadrotor and gimbal are kinemat-

ically coupled [46], in the sense that moving the position of the quadrotor also moves the

position of the gimbal. However, we assume that our quadrotor and gimbal are not dynam-

ically coupled [46], in the sense that torques acting on the gimbal do not induce reactive

torques on the quadrotor. These assumptions simplify the modeling of our system. More-

over, we feel they are justified, since in the cameras mounted on quadrotors tend to be very

lightweight relative to the quadrotors themselves. For example, on our hardware platform,

our camera and gimbal are roughly 25× lighter than our quadrotor.

Relating the Quadrotor’s Position to the Control Inputs We assume that there

are two forces acting on our quadrotor camera: (1) a thrust force induced by the quadrotor’s

propellers; and (2) an external force that models any other forces acting on the quadrotor,

such as gravity, wind, and drag. Based on this assumption, we use Newton’s Second Law

to relate the linear acceleration of the quadrotor in the world frame, p̈, to the control input

applied at each of the quadrotor’s propellers, uq, as follows,

mp̈ = fe + RW,QMfuq (A.1)

85

APPENDIX A. QUADROTOR CAMERA MODEL DETAILS 86

where m is the mass of the quadrotor camera; fe is the external force; Mf is the matrix

that maps the control input at each of the quadrotor’s propellers into a net thrust force

oriented along the quadrotor’s local y axis; and RW,Q is the rotation matrix that represents

the quadrotor’s orientation in the world frame (i.e., the rotation matrix that maps vectors

from the body frame of the quadrotor into the world frame). We define Mf as follows,

Mf =

0 0 0 0

1 1 1 1

0 0 0 0

 (A.2)

Relating the Quadrotor’s Angular Acceleration and Angular Velocity to the

Control Inputs We use Euler’s Second Law to relate the angular acceleration and angular

velocity of the quadrotor in the body frame, ω̇q and ωq respectively, to the control input

applied at each of the quadrotor’s propellers, uq, as follows,

Iqω̇q + ωq × Iqωq = Mτuq (A.3)

where Iq is the inertia matrix of the quadrotor camera; and Mτ is the matrix that maps the

control input at each of the quadrotor’s propellers into a net torque acting on the quadrotor

in the body frame. We define Mτ as follows,

Mτ =

dsα dsβ −dsβ −dsα

γ −γ γ −γ

−dcα dcβ dcβ −dcα

 (A.4)

where d, α, β, and γ are constants related to the physical design of a quadrotor: d is the

distance from the quadrotor’s center of mass to it’s propellers; α is the angle in radians that

the quadrotor’s front propellers form with the quadrotor’s positive x axis; β is the angle in

radians that the quadrotor’s rear propellers form with the quadrotor’s negative x axis; γ is

the magnitude of the in-plane torque generated by the quadrotor propeller producing 1 unit

of upward thrust force; ca = cos a and sa = sin a. Our definition for Mτ assumes: (1) the

quadrotor’s propellers are co-planar with its center of mass; and (2) a constant relationship

between the magnitude of the in-plane torque generated by the quadrotor propeller, and

the magnitude of the upward thrust force generated by the propeller.

Relating the Gimbal’s Angular Acceleration to the Control Inputs We assume

that our 3 degree-of-freedom gimbal is fully actuated, and has very large actuator limits.

APPENDIX A. QUADROTOR CAMERA MODEL DETAILS 87

Since fully actuated systems are feedback equivalent [81] to double integrator systems, and

we assume that our gimbal has very large actuator limits, we model the gimbal as a double

integrator for simplicity. We relate the angular acceleration of the gimbal in the body frame

of the quadrotor, ω̇g to the feedback linearized [81] control input applied at the gimbal, ug,

as follows,

ω̇g = ug (A.5)

Relating Euler Angle Time Derivatives to Angular Velocity and Angular Ac-

celeration At this point, we have related the angular velocities and accelerations of our

system to our control inputs. However, to derive the complete equations of motion for our

system, we need to relate the Euler angle time derivatives of our system to our control

inputs. To do this, we must relate Euler angle time derivatives to angular velocities and

angular accelerations.

Let e = [θ ψ φ]T be a vector of our Euler angles. Let us define the rotation matrix R

in terms of the Euler angles θ, ψ, and φ as follows,

R = Rψ
yR

θ
zR

φ
x

=

cψ 0 sψ

0 1 0

−sψ 0 cψ

1 0 0

0 cθ −sθ

0 sθ cθ

cφ −sφ 0

sφ cφ 0

0 0 1

(A.6)

where ca = cos(a) and sa = sin(a).

We can straightforwardly compute the time derivative of this expression to get an (ad-

mittedly unpleasant) expression for Ṙ in terms of our Euler angles and their time derivatives.

We omit this step for brevity.

We make the observation that Ṙ = (ω)×R, where ω is the angular velocity of a rotating

body in the non-rotating frame; and the notation (a)× refers to the skew-symmetric matrix,

computed as a function of the vector a, such that (a)× b = a× b for all vectors b.

From the above expression, we immediately get ṘRT = (ω)×. We observe that the

entries of ṘRT are linear in ψ̇, θ̇, and φ̇. Therefore, there is a matrix A that relates ė to

ω as follows,

Aė = ω (A.7)

We can take the time derivative of both sides of this expression using the product rule to

get the following expression,

Ȧė + Aë = ω̇ (A.8)

APPENDIX A. QUADROTOR CAMERA MODEL DETAILS 88

We define the matrix A that relates ė to ω according to the linear relationship Aė = ω,

and its time derivative Ȧ, as follows,

A =

cψ 0 sψcθ

0 1 −sθ

−sψ 0 cψcθ

Ȧ =

−sψψ̇ 0 −sψsθ θ̇ + cψcθψ̇

0 0 −cθ θ̇

−cψψ̇ 0 −sψcθψ̇ + sθcψ θ̇

(A.9)

where ca = cos a and sa = sin a.

Relating the Quadrotor’s Orientation to the Control Inputs We can rotate equa-

tions (7) and (8) into the body frame of the quadrotor, and substitute them into equation

(3), to get the following expression for the quadrotor’s rotational dynamics,

Iq(RQ,WȦqėq + RQ,WAqëq) +

RQ,WAqėq × IqRQ,WAqėq = Mτuq
(A.10)

where eq is the vector of Euler angles representing the quadrotor’s orientation in the world

frame; RQ,W is the rotation matrix that maps vectors from the world frame into the body

frame of the quadrotor; and Aq is the matrix that relates the quadrotor’s Euler angle time

derivatives to its angular velocity in the world frame.

Relating the Gimbal’s Orientation to the Control Inputs Similarly to our approach

in the previous subsection, we can substitute equation (8) into equation (5) to get the

following expression for the gimbal’s rotational dynamics,

Ȧgėg + Agëg = ug (A.11)

where eg is the vector of Euler angles representing the orientation of the gimbal in the body

frame of the quadrotor; and Ag is the matrix that relates the gimbal’s Euler angle time

derivatives to its angular velocity in the body frame of the quadrotor.

APPENDIX A. QUADROTOR CAMERA MODEL DETAILS 89

Defining the Manipulator Matrices We define the layout of our degree-of-freedom

vector q, and our control vector u, as follows,

q =

p

eq

eg

 u =

uq
ug

 (A.12)

Based on this layout, we can express equations (1), (10), and (11) in manipulator form. In

doing so, we get the following expressions for our quadrotor camera manipulator matrices,

H(q) =

mI3×3 03×3 03×3

03×3 IqRQ,WAq 03×3

03×3 03×3 Ag

C(q, q̇) =

03×3 03×3 03×3

03×3 IqRQ,WȦq − (IqRQ,WAqėq)×RQ,WAq 03×3

03×3 03×3 Ȧg

G(q) =

−fe

03×1

03×1

B(q) =

RW,QMf 03×3

Mτ 03×3

03×4 I3×3

(A.13)

where 0p×q is the p× q zero matrix; and Ik×k is the k× k identity matrix. In our definition

for the manipulator matrices above, we assume that fe can depend on q, but cannot depend

on q̇. We make this assumption for simplicity, although it could be relaxed by making

minor modifications to C and G above.

APPENDIX A. QUADROTOR CAMERA MODEL DETAILS 90

A.2 Proof that B is Always Full Column Rank

To prove that the matrix B is full column rank, consider the following matrix,

M =

RW,QMf

Mτ

 (A.14)

It will suffice to show that rank(M) = 4. We assume without loss of generality that

0 < α, β < π
2 and that d, γ > 0. We can clearly see that rank(Mτ) = 3.

Suppose for the sake of contradiction that rank(M) = 3. Then we must be able to

represent any row of RW,QMf as a linear combination of the rows of Mτ . Let the row

r = [r r r r] be one such row of RW,QMf . Representing r as a linear combination of the

rows in Mτ , we get the following system of equations,

r = idsα + jγ − kdcα

r = idsβ − jγ + kdcβ

r = − idsβ + jγ + kdcβ

r = − idsα − jγ − kdcα

(A.15)

for some i, j, k. Equating the first and last of these equations above, we get idsα = −jγ.

Equating the middle two of these equations above, we get idsβ = jγ. Substituting these

two new expressions into the first two equations above, we get cα = −cβ. However, this is

only possible if α or β is outside the range (0, π2). Since we had previously assumed that α

and β are both inside the range (0, π2), we have arrived at a contradiction. This completes

our proof.

Bibliography

[1] FAA registered nearly 300,000 unmanned aircraft owners. FAA, Jan 2016. URL:

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=19914.

[2] 3D Robotics. IRIS+, 2014. URL: http://3drobotics.com/iris/.

[3] 3D Robotics. 3DR Radio Set, Aug 2015. URL: https://3dr.com/support/articles/

207681193/3dr_radio_set/.

[4] 3D Robotics. Solo, 2015. URL: http://3drobotics.com/solo/.

[5] 3D Robotics. u-blox GPS with compass kit, Aug 2015. URL: https://3dr.com/

support/articles/207681053/3dr_ublox_gps_with_compass_kit/.

[6] Hyunsang Ahn, Dohyung Kim, Jaeyeon Lee, Suyoung Chi, Kyekyung Kim, Jinsul Kim,

Minsoo Hahn, and Hyunseok Kim. A robot photographer with user interactivity. In

Intelligent Robots and Systems (IROS), 2006.

[7] Ross Allen and Marco Pavone. A real-time framework for kinodynamic planning with

application to quadrotor obstacle avoidance. In Guidance, Navigation, and Control,

2016.

[8] APM. APM Autopilot Suite, 2015. URL: http://ardupilot.com/.

[9] Daniel Arijon. Grammar of the Film Language. Hastings House Publishers, 1976.

[10] Graduate Assembly. Graduate Student Happiness and Well-Being Report, 2014. Ac-

cessed: 2017-04-10. URL: http://ga.berkeley.edu/wp-content/uploads/2015/04/

wellbeingreport_2014.pdf.

91

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=19914
http://3drobotics.com/iris/
https://3dr.com/support/articles/207681193/3dr_radio_set/
https://3dr.com/support/articles/207681193/3dr_radio_set/
http://3drobotics.com/solo/
https://3dr.com/support/articles/207681053/3dr_ublox_gps_with_compass_kit/
https://3dr.com/support/articles/207681053/3dr_ublox_gps_with_compass_kit/
http://ardupilot.com/
http://ga.berkeley.edu/wp-content/uploads/2015/04/wellbeingreport_2014.pdf
http://ga.berkeley.edu/wp-content/uploads/2015/04/wellbeingreport_2014.pdf

BIBLIOGRAPHY 92

[11] Abraham Bachrach, Samuel Prentice, Ruijie He, and Nicholas Roy. Range–robust

autonomous navigation in gps-denied environments. Journal of Field Robotics, 28(5),

2011.

[12] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to Splines

for use in Computer Graphics & Geometric Modeling. Morgan Kaufmann Publishers,

1987.

[13] Jim Blinn. Where am I? What am I looking at? (cinematography). IEEE Computer

Graphics and Applications, 8(4), 1988.

[14] Bruce Block. The Visual Story: Creating the Visual Structure of Film, TV and Digital

Media. CRC Press, 2013.

[15] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[16] Brian Heater. 3D Robotics launches Iris quadcopter, for pre-assembled drone

action. Engadget, Aug 2013. URL: https://www.engadget.com/2013/08/19/

3d-robotics-iris/.

[17] Zachary Byers, Michael Dixon, Kevin Goodier, Cindy M Grimm, and William D Smart.

An autonomous robot photographer. In Intelligent Robots and Systems (IROS), 2003.

[18] Jason Campbell and Padmanabhan Pillai. Leveraging limited autonomous mobility to

frame attractive group photos. In International Conference on Robotics and Automa-

tion (ICRA), 2005.

[19] Pedro Castillo, Alejandro Dzul, and Rogelio Lozano. Real-time stabilization and track-

ing of a four rotor mini-rotorcraft. In European Control Conference (ECC). IEEE, 2003.

[20] Marc Christie, Patrick Olivier, and Jean-Marie Normand. Camera control in computer

graphics. Computer Graphics Forum, 27(8), 2008.

[21] Rey Coaguila, Gita Sukthankar, and Rahul Sukthankar. Selecting vantage points for

an autonomous quadcopter videographer. In Florida Artificial Intelligence Research

Society Conference, 2016.

https://www.engadget.com/2013/08/19/3d-robotics-iris/
https://www.engadget.com/2013/08/19/3d-robotics-iris/

BIBLIOGRAPHY 93

[22] Nicolas Courty, Fabrice Lamarche, Stéphane Donikian, and Éric Marchand. A cine-

matography system for virtual storytelling. In Virtual Storytelling, 2003.

[23] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for UAVs in cluttered

environments. In International Conference on Robotics and Automation (ICRA), 2015.

[24] James Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation

Vectors, 2006.

[25] DJI. DJI Go, 2015. URL: http://www.dji.com/product/goapp.

[26] DJI. DJI Ground Station, 2015. URL: http://www.dji.com/product/

pc-ground-station.

[27] DJI. Mavic Pro User Manual v1.6, Apr 2017. Accessed: 2017-05-16. URL: https://

dl.djicdn.com/downloads/mavic/20170428/Mavic+Pro+User+Manual+V1.6.pdf.

[28] Raghudeep Gadde and Kamalakar Karlapalem. Aesthetic guideline driven photography

by robots. In International Joint Conference on Artificial Intelligence, 2011.

[29] Quentin Galvane, Marc Christie, Chrsitophe Lino, and Rémi Ronfard. Camera-on-

rails: Automated computation of constrained camera paths. In Proceedings of the 8th

ACM SIGGRAPH Conference on Motion in Games, MIG ’15. ACM, 2015.

[30] Quentin Galvane, Marc Christie, Rémi Ronfard, Chen-Kim Lim, and Marie-Paule Cani.

Steering behaviors for autonomous cameras. In Proceedings of Motion on Games. ACM,

2013.

[31] Quentin Galvane, Rémi Ronfard, Marc Christie, and Nicolas Szilas. Narrative-Driven

Camera Control for Cinematic Replay of Computer Games. In Motion In Games,

November 2014.

[32] Christoph Gebhardt, Benjamin Hepp, Tobias Nägeli, Stefan Stevšić, and Otmar

Hilliges. Airways: Optimization-based planning of quadrotor trajectories according

to high-level user goals. In Proceedings of the 2016 CHI Conference on Human Factors

in Computing Systems, CHI. ACM, 2016.

[33] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm

for large-scale constrained optimization. SIAM Journal on Optimization, 12(4), 2002.

http://www.dji.com/product/goapp
http://www.dji.com/product/pc-ground-station
http://www.dji.com/product/pc-ground-station
https://dl.djicdn.com/downloads/mavic/20170428/Mavic+Pro+User+Manual+V1.6.pdf
https://dl.djicdn.com/downloads/mavic/20170428/Mavic+Pro+User+Manual+V1.6.pdf

BIBLIOGRAPHY 94

[34] Brian Guenter and Richard Parent. Motion control: Computing the arc length of

parametric curves. Computer Graphics Applications, 10(3), 1990.

[35] Mark Haigh-Hutchinson. Real time cameras: A guide for game designers and develop-

ers. Morgan Kaufmann Publishers Inc., 2009.

[36] Li-wei He, Michael F. Cohen, and David H. Salesin. The virtual cinematographer: A

paradigm for automatic real-time camera control and directing. In SIGGRAPH, 1996.

[37] Gabe Hoffmann, Dev Gorur Rajnarayan, Steven L Waslander, David Dostal, Jung Soon

Jang, and Claire J Tomlin. The stanford testbed of autonomous rotorcraft for multi

agent control (starmac). In Digital Avionics Systems Conference (DASC), volume 2.

IEEE, 2004.

[38] Wei-Hsien Hsu, Yubo Zhang, and Kwan-Liu Ma. A multi-criteria approach to camera

motion design for volume data animation. Transactions on Visualization and Computer

Graphics (SciVis), 19(12), 2013.

[39] John D Hunter. Matplotlib: A 2D graphics environment. Computing In Science &

Engineering, 9(3), 2007.

[40] Intel. Intel Galileo Gen 2 Board, Sep 2014. URL: https://ark.intel.com/products/

83137/Intel-Galileo-Gen-2-Board.

[41] Elliot Kaplan and Christopger Hegarty. Understanding GPS: Principles and Applica-

tions. Artec House, 2006.

[42] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The international journal of robotics research, 30(7), 2011.

[43] Steven D. Katz. Film Directing Shot by Shot. Butterworth Publishers, 1991.

[44] Myung-Jin Kim, Tae-Hoon Song, Seung-Hun Jin, Soon-Mook Jung, Gi-Hoon Go, Key-

Ho Kwon, and Jae-Wook Jeon. Automatically available photographer robot for con-

trolling composition and taking pictures. In Intelligent Robots and Systems (IROS),

2010.

[45] Suseong Kim, Seungwon Choi, and H. Jin Kim. Aerial manipulation using a quadrotor

with a two DOF robotic arm. In Intelligent Robots and Systems (IROS), 2013.

https://ark.intel.com/products/83137/Intel-Galileo-Gen-2-Board
https://ark.intel.com/products/83137/Intel-Galileo-Gen-2-Board

BIBLIOGRAPHY 95

[46] Konstantin Kondak, Kai Krieger, Alin Albu-Schaeffer, Marc Schwarzbach, Maximilian

Laiacker, Ivan Maza, Angel Rodriguez-Castano, and Anibal Ollero. Closed-loop behav-

ior of an autonomous helicopter equipped with a robotic arm for aerial manipulation

tasks. International Journal of Advanced Robotic Systems, 10(145), 2013.

[47] Vijay Kumar and Nathan Michael. Opportunities and challenges with autonomous

micro aerial vehicles. International Journal of Robotics Research, 31(11), 2012.

[48] John Lasseter. Principles of traditional animation applied to 3D computer animation.

In SIGGRAPH, 1987.

[49] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[50] J. Gordon Leishman. Principles of Helicopter Aerodynamics. Cambridge University

Press, 2000.

[51] Katia Levecque, Frederik Anseel, Alain De Beuckelaer, Johan Van der Heyden, and

Lydia Gisle. Work organization and mental health problems in PhD students. Research

Policy, 46(4), 2017.

[52] Tsai-Yen Li and Xiang-Yan Xiao. An interactive camera planning system for automatic

cinematographer. In Multimedia Modeling, 2005.

[53] Hyon Lim and Sudipta N Sinha. Monocular localization of a moving person onboard

a quadrotor MAV. In International Conference on Robotics and Automation (ICRA),

2015.

[54] Christophe Lino and Marc Christie. Intuitive and efficient camera control with the

toric space. Transactions on Graphics (SIGGRAPH), 34(4), 2015.

[55] Linx. SH Series GPS Antenna, Feb 2014. URL: https://linxtechnologies.com/wp/

product/sh-series-gps-antenna/.

[56] Vincenzo Lippiello and Fabio Ruggiero. Exploiting redundancy in cartesian impedance

control of UAVs equipped with a robotic arm. In Intelligent Robots and Systems

(IROS), 2012.

[57] Sergei Lupashin, Markus Hehn, Mark W Mueller, Angela P Schoellig, Michael

Sherback, and Raffaello DAndrea. A platform for aerial robotics research and demon-

stration: The flying machine arena. Mechatronics, 24(1), 2014.

https://linxtechnologies.com/wp/product/sh-series-gps-antenna/
https://linxtechnologies.com/wp/product/sh-series-gps-antenna/

BIBLIOGRAPHY 96

[58] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation,

and control of quadrotor. IEEE Robotics Automation Magazine, 19(3), Sep 2012.

[59] Joseph Mascelli. The Five C’s of Cinematography. Silman-James Press, 1965.

[60] Lorenz Meier. Pixhawk Autopilot. URL: https://pixhawk.org/modules/pixhawk.

[61] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. Pixhawk:

A system for autonomous flight using onboard computer vision. In IEEE international

conference on Robotics and automation (ICRA). IEEE, 2011.

[62] Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer, and

Marc Pollefeys. PIXHAWK: A micro aerial vehicle design for autonomous flight using

onboard computer vision. Autonomous Robots, 33(1–2), 2012.

[63] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control

for quadrotors. In International Conference on Robotics and Automation (ICRA),

2011.

[64] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The grasp

multiple micro-uav testbed. IEEE Robotics & Automation Magazine, 17(3), 2010.

[65] T. Naegeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges. Real-time mo-

tion planning for aerial videography with dynamic obstacle avoidance and viewpoint

optimization. IEEE Robotics and Automation Letters, PP(99), Feb 2017.

[66] Tayyab Naseer, Jurgen Sturm, and Daniel Cremers. Followme: Person following and

gesture recognition with a quadrocopter. In Intelligent Robots and Systems (IROS),

2013.

[67] Swift Navigation. Integrating Piksi with the Pixhawk platform, Jun 2015. URL: http:

//docs.swiftnav.com/wiki/Integrating_Piksi_with_the_Pixhawk_platform.

[68] NovaTel. GPS-701-GG Single-Frequency Pinwheel GNSS Antenna, Feb 2014. URL:

http://www.navtechgps.com/gps_701_gg_single_frequency_pinwheel_gnss_

antenna/.

[69] Michael Osborne. Mission Planner Overview. Accessed: 2017-04-10. URL: http:

//ardupilot.org/planner/docs/mission-planner-overview.html.

https://pixhawk.org/modules/pixhawk
http://docs.swiftnav.com/wiki/Integrating_Piksi_with_the_Pixhawk_platform
http://docs.swiftnav.com/wiki/Integrating_Piksi_with_the_Pixhawk_platform
http://www.navtechgps.com/gps_701_gg_single_frequency_pinwheel_gnss_antenna/
http://www.navtechgps.com/gps_701_gg_single_frequency_pinwheel_gnss_antenna/
http://ardupilot.org/planner/docs/mission-planner-overview.html
http://ardupilot.org/planner/docs/mission-planner-overview.html

BIBLIOGRAPHY 97

[70] Thomas Oskam, Robert W. Sumner, Nils Thuerey, and Markus Gross. Visibility tran-

sition planning for dynamic camera control. In Symposium on Computer Animation

(SCA), 2009.

[71] Rick Parent. Computer Animation: Algorithms and Techniques. Morgan Kaufmann

Publishers, 2007.

[72] Ben Popper. Drone maker DJI nabs $75 million in funding at a $10 billion valua-

tion. The Verge, May 2015. URL: http://www.theverge.com/2015/5/6/8554429/

dji-75-million-funding-investment-accel-10-billion-valuation.

[73] Raymond W Prouty. Helicopter Performance, Stability, and Control. Krieger Pub

Company, 1995.

[74] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning for

aggressive quadrotor flight in dense indoor environments. In International Symposium

of Robotics Research (ISRR), 2013.

[75] Mike Roberts. Flashlight: A Python Library for Analyzing and Solving Quadrotor

Control Problems, 2016. URL: http://mikeroberts3000.github.io/flashlight.

[76] Mike Roberts and Pat Hanrahan. Generating dynamically feasible trajectories for

quadrotor cameras. Transactions on Graphics (SIGGRAPH), 35(4), 2016.

[77] Michael Rubin. The Little Digital Video Book. Peachpit Press, Pearson Education,

2009.

[78] F. Ruggiero, M.A. Trujillo, R. Cano, H. Ascorbe, A. Viguria, C. Perez, V. Lippiello,

A. Ollero, and B. Siciliano. A multilayer control for multirotor UAVs equipped with

a servo robot arm. In International Conference on Robotics and Automation (ICRA),

2015.

[79] Manohar Srikanth, Kavita Bala, and Frédo Durand. Computational rim illumination

with aerial robots. In Computational Aesthetics (CAe), 2014.

[80] Swift Navigation. Piksi Datasheet, 2013. URL: https://www.u-blox.com/sites/

default/files/NEO-M8P_DataSheet_%28UBX-15016656%29.pdf.

http://www.theverge.com/2015/5/6/8554429/dji-75-million-funding-investment-accel-10-billion-valuation
http://www.theverge.com/2015/5/6/8554429/dji-75-million-funding-investment-accel-10-billion-valuation
http://mikeroberts3000.github.io/flashlight
https://www.u-blox.com/sites/default/files/NEO-M8P_DataSheet_%28UBX-15016656%29.pdf
https://www.u-blox.com/sites/default/files/NEO-M8P_DataSheet_%28UBX-15016656%29.pdf

BIBLIOGRAPHY 98

[81] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming,

Flying, and Manipulation (Course Notes for MIT 6.832), 2014. URL: http://people.

csail.mit.edu/russt/underactuated/.

[82] Philippe Terrier and Yves Schutz. How useful is satellite positioning system (GPS)

to track gait parameters? A review. Journal of Neuroengineering and Rehabilitation,

2(1), 2005.

[83] Celine Teuliere, Laurent Eck, and Eric Marchand. Chasing a moving target from a

flying UAV. In Intelligent Robots and Systems (IROS), 2011.

[84] u-blox. Neo-M8P Datasheet, Jan 2017. URL: http://docs.swiftnav.com/pdfs/

piksi_datasheet_v2.3.1.pdf.

[85] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a

structure for efficient numerical computation. Computing in Science & Engineering,

13(2), 2011.

[86] Peter Wayner. How it works; gyroscopes that don’t spin make it easy to hover. New

York Times, August 2002.

[87] Hyunsoo Yang and Dongjun Lee. Dynamics and control of quadrotor with robotic

manipulator. In International Conference on Robotics and Automation (ICRA), 2014.

[88] Cem Yuksel, Scott Schaefer, and John Keyser. Parameterization and applications of

Catmull-Rom curves. Computer Aided Design, 43(7), 2011.

http://people.csail.mit.edu/russt/underactuated/
http://people.csail.mit.edu/russt/underactuated/
http://docs.swiftnav.com/pdfs/piksi_datasheet_v2.3.1.pdf
http://docs.swiftnav.com/pdfs/piksi_datasheet_v2.3.1.pdf

	Abstract
	Acknowledgments
	Introduction
	Background
	The Origins of Quadrotor Aircraft
	Relevant Work on Quadrotor Planning and Control
	Relevant Work on Cinematography and Camera Control
	Examples of Current Robotic Cinematography Systems

	Guiding Quadrotors with 3D Animation Primitives
	Approach
	Designing A Shot Planning Interface
	Design Principles
	User Interface

	Generating Feasible Trajectories for Quadrotor Cameras
	Technical Overview
	A Quadrotor Camera Model
	Synthesizing Virtual Camera Trajectories
	Synthesizing State Space Trajectories and Control Trajectories
	Real-Time Control System and Hardware Platform

	Evaluation and Discussion

	Evaluating RTK GPS for Quadrotor Localization
	Approach
	Methodology
	Hardware and Software Platform
	Data Collection and Analysis
	Testing Procedure

	Results
	Precision of Stationary Position Measurement
	Accuracy of Loop Closure Measurement
	Precision of Fixed Point Hovering
	Accuracy of Autonomous Return and Landing
	Performance: Time to First RTK Fix

	Discussion
	Conclusion

	Guiding Quadrotors with Composition Principles
	Approach
	Design Goals and Challenges
	Technical Overview
	Modeling Subjects and Cameras
	Subject Model
	Quadrotor Camera Model

	Generating Static Shots
	Defining Shots
	Types of Canonical Shots

	Transitioning Between Shots
	Generating Basis Paths
	Optimal Blending of Basis Paths
	Generating the Final Trajectory

	Tracking and Control Platform
	Results
	Discussion

	Conclusion
	Impact
	Final Remarks

	Quadrotor Camera Model Details
	Deriving the Quadrotor Camera Manipulator Matrices
	Proof that B is Always Full Column Rank

	Bibliography

